cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278041 The tribonacci representation of a(n) is obtained by appending 0,1,1 to the tribonacci representation of n (cf. A278038).

Original entry on oeis.org

3, 10, 16, 23, 27, 34, 40, 47, 54, 60, 67, 71, 78, 84, 91, 97, 104, 108, 115, 121, 128, 135, 141, 148, 152, 159, 165, 172, 176, 183, 189, 196, 203, 209, 216, 220, 227, 233, 240, 246, 253, 257, 264, 270, 277, 284, 290, 297, 301, 308, 314, 321, 328, 334, 341, 345, 352, 358, 365, 371, 378, 382, 389, 395, 402, 409, 415
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2016

Keywords

Comments

This sequence gives the indices k for which A080843(k) = 2, sorted increasingly with offset 0. In the W. Lang link a(n) = C(n). - Wolfdieter Lang, Dec 06 2018
Positions of letter c in the tribonacci word t generated by a->ab, b->ac, c->a, when given offset 0. - Michel Dekking, Apr 03 2019
This sequence gives the positions of the word ac in the tribonacci word t. This follows from the fact that the letter c is always preceded in t by the letter a, and the formula AB = C-1, where A := A003144, B := A003145, C := A003146. - Michel Dekking, Apr 09 2019

Examples

			The tribonacci representation of 7 is 1000 (see A278038), so a(7) has tribonacci representation 1000011, which is 44+2+1 = 47, so a(7) = 47.
		

Crossrefs

By analogy with the Wythoff compound sequences A003622 etc., the nine compounds of A003144, A003145, A003146 might be called the tribonacci compound sequences. They are A278040, A278041, and A319966-A319972.

Formula

a(n) = A003146(n+1) - 1.
a(n) = A003144(A003145(n)). - N. J. A. Sloane, Oct 05 2018
From Wolfdieter Lang, Dec 06 2018: (Start)
a(n) = n + 2 + A(n) + B(n), where A(n) = A278040(n) and B = A278039(n).
a(n) = 7*n + 3 - (z_A(n-1) + 3*z_C(n-1)), where z_A(n) = A276797(n+1) and z_C(n) = A276798(n+1) - 1, n >= 0.
For proofs see the W. Lang link in A080843, eqs. 37 and 40.
a(n) - 1 = B2(n), where B2-numbers are B-numbers from A278039 followed by a C-number from A278041. See a comment and example in A319968.
(End)