A278049 a(n) = 3*(Sum_{k=1..n} phi(k)) - 1, where phi = A000010.
2, 5, 11, 17, 29, 35, 53, 65, 83, 95, 125, 137, 173, 191, 215, 239, 287, 305, 359, 383, 419, 449, 515, 539, 599, 635, 689, 725, 809, 833, 923, 971, 1031, 1079, 1151, 1187, 1295, 1349, 1421, 1469, 1589, 1625, 1751, 1811, 1883, 1949, 2087, 2135, 2261, 2321, 2417, 2489, 2645, 2699, 2819, 2891, 2999
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. Lehner and M. Newman, Sums involving Farey fractions, Acta Arithmetica 15.2 (1969): 181-187. See Eq. (19).
Crossrefs
Programs
-
Maple
with(numtheory); f:=n->3*add(phi(r),r=1..n)-1; [seq(f(r),r=1..50)];
-
Mathematica
Table[3 Sum[EulerPhi@ k, {k, n}] - 1, {n, 57}] (* Michael De Vlieger, Dec 16 2016 *)
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A278049(n): # based on second formula in A018805 if n == 0: return -1 c, j = 0, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*(2*A278049(k1)-1)//3 j, k1 = j2, n//j2 return 3*(n*(n-1)-c+j)//2 - 1 # Chai Wah Wu, Mar 25 2021
Formula
G.f.: (1/(1 - x)) * (-x + 3 * Sum_{k>=1} mu(k) * x^k / (1 - x^k)^2). - Ilya Gutkovskiy, Feb 14 2020