cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278074 Triangle read by rows, coefficients of the polynomials P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)* P(m, n-k)*z with P(m, 0) = 1 and m = 4.

Original entry on oeis.org

1, 0, 1, 0, 1, 70, 0, 1, 990, 34650, 0, 1, 16510, 2702700, 63063000, 0, 1, 261630, 213519150, 17459442000, 305540235000, 0, 1, 4196350, 17651304000, 4350310965000, 231905038365000, 3246670537110000
Offset: 0

Views

Author

Peter Luschny, Jan 22 2017

Keywords

Examples

			Triangle starts:
[1]
[0, 1]
[0, 1,     70]
[0, 1,    990,     34650]
[0, 1,  16510,   2702700,    63063000]
[0, 1, 261630, 213519150, 17459442000, 305540235000]
		

Crossrefs

Cf. A014608 (diagonal), A243665 (row sums), A211212 (alternating row sums), A281480 (central coefficients).
Cf. A097805 (m=0), A131689 (m=1), A241171 (m=2), A278073 (m=3).
Cf. A327024 (refinement).

Programs

  • Maple
    P := proc(m,n) option remember; if n = 0 then 1 else
    add(binomial(m*n,m*k)* P(m,n-k)*x, k=1..n) fi end:
    for n from 0 to 6 do PolynomialTools:-CoefficientList(P(4,n), x) od;
    # Alternatively:
    A278074_row := proc(n) 1/(1-t*((cosh(x)+cos(x))/2-1)); expand(series(%,x,4*n+1));
    (4*n)!*coeff(%,x,4*n); PolynomialTools:-CoefficientList(%,t) end:
    for n from 0 to 5 do A278074_row(n) od;
  • Mathematica
    With[{m = 4}, Table[Expand[j!*SeriesCoefficient[1/(1 - t*(MittagLefflerE[m, x^m] - 1)), {x, 0, j}]], {j, 0, 24, m}]];
    Function[arg, CoefficientList[arg, t]] /@ % // Flatten
  • Sage
    # uses [P from A278073]
    def A278074_row(n): return list(P(4, n))
    for n in (0..6): print(A278074_row(n)) # Peter Luschny, Mar 24 2020

Formula

E.g.f.: 1/(1-t*((cosh(x)+cos(x))/2-1)), nonzero terms.