A278074 Triangle read by rows, coefficients of the polynomials P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)* P(m, n-k)*z with P(m, 0) = 1 and m = 4.
1, 0, 1, 0, 1, 70, 0, 1, 990, 34650, 0, 1, 16510, 2702700, 63063000, 0, 1, 261630, 213519150, 17459442000, 305540235000, 0, 1, 4196350, 17651304000, 4350310965000, 231905038365000, 3246670537110000
Offset: 0
Examples
Triangle starts: [1] [0, 1] [0, 1, 70] [0, 1, 990, 34650] [0, 1, 16510, 2702700, 63063000] [0, 1, 261630, 213519150, 17459442000, 305540235000]
Links
- Robert Israel, Table of n, a(n) for n = 0..8510
Crossrefs
Programs
-
Maple
P := proc(m,n) option remember; if n = 0 then 1 else add(binomial(m*n,m*k)* P(m,n-k)*x, k=1..n) fi end: for n from 0 to 6 do PolynomialTools:-CoefficientList(P(4,n), x) od; # Alternatively: A278074_row := proc(n) 1/(1-t*((cosh(x)+cos(x))/2-1)); expand(series(%,x,4*n+1)); (4*n)!*coeff(%,x,4*n); PolynomialTools:-CoefficientList(%,t) end: for n from 0 to 5 do A278074_row(n) od;
-
Mathematica
With[{m = 4}, Table[Expand[j!*SeriesCoefficient[1/(1 - t*(MittagLefflerE[m, x^m] - 1)), {x, 0, j}]], {j, 0, 24, m}]]; Function[arg, CoefficientList[arg, t]] /@ % // Flatten
-
Sage
# uses [P from A278073] def A278074_row(n): return list(P(4, n)) for n in (0..6): print(A278074_row(n)) # Peter Luschny, Mar 24 2020
Formula
E.g.f.: 1/(1-t*((cosh(x)+cos(x))/2-1)), nonzero terms.