cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278102 a(n) is the largest j such that A278101(n,k) strictly decreases for k=1..j.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 2, 4, 2, 3, 2, 3, 4, 2, 4, 2, 3, 2, 3, 4, 2, 5, 6, 5, 2, 2, 3, 2, 4, 4, 4, 2, 2, 3, 2, 3, 4, 4, 5, 2, 2, 2, 3, 5, 3, 5, 2, 2, 2, 3, 5, 2, 4, 4, 4, 2, 3, 4, 2, 4, 5, 4, 2, 3, 2, 2, 4, 5, 4, 3, 3, 2, 2, 3, 5, 4, 5, 2, 2, 2, 3, 2, 3, 4, 2, 2, 2, 3, 2, 3, 4, 6, 5, 2, 3, 2, 2, 4, 6, 6, 2, 3, 2
Offset: 1

Views

Author

Jason Kimberley, Nov 15 2016

Keywords

Crossrefs

This is the row length sequence for triangles A278103 and A278104.
A278106 lists first occurrences in this sequence.

Programs

  • Magma
    A277647:=func;
    A278101_row:=funcA277647(n,k):k in[1..n^2]|IsSquarefree(k)]>;
    A278102:=funcA278101_row(n) >;
    [A278102(n):n in[1..103]];
  • Mathematica
    Map[Length@ TakeWhile[FoldList[Function[s, Boole[s < 0] #2][#2 - #1] &, #], # > 0 &] &, #] &@ Map[DeleteCases[#, 0] &, Table[Boole[SquareFreeQ@ k] k Floor[n/Sqrt@ k]^2, {n, 23}, {k, n^2}] ] // Flatten (* Michael De Vlieger, Nov 24 2016 *)