cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A278102 a(n) is the largest j such that A278101(n,k) strictly decreases for k=1..j.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 2, 4, 2, 3, 2, 3, 4, 2, 4, 2, 3, 2, 3, 4, 2, 5, 6, 5, 2, 2, 3, 2, 4, 4, 4, 2, 2, 3, 2, 3, 4, 4, 5, 2, 2, 2, 3, 5, 3, 5, 2, 2, 2, 3, 5, 2, 4, 4, 4, 2, 3, 4, 2, 4, 5, 4, 2, 3, 2, 2, 4, 5, 4, 3, 3, 2, 2, 3, 5, 4, 5, 2, 2, 2, 3, 2, 3, 4, 2, 2, 2, 3, 2, 3, 4, 6, 5, 2, 3, 2, 2, 4, 6, 6, 2, 3, 2
Offset: 1

Views

Author

Jason Kimberley, Nov 15 2016

Keywords

Crossrefs

This is the row length sequence for triangles A278103 and A278104.
A278106 lists first occurrences in this sequence.

Programs

  • Magma
    A277647:=func;
    A278101_row:=funcA277647(n,k):k in[1..n^2]|IsSquarefree(k)]>;
    A278102:=funcA278101_row(n) >;
    [A278102(n):n in[1..103]];
  • Mathematica
    Map[Length@ TakeWhile[FoldList[Function[s, Boole[s < 0] #2][#2 - #1] &, #], # > 0 &] &, #] &@ Map[DeleteCases[#, 0] &, Table[Boole[SquareFreeQ@ k] k Floor[n/Sqrt@ k]^2, {n, 23}, {k, n^2}] ] // Flatten (* Michael De Vlieger, Nov 24 2016 *)

A278103 Irregular triangle T(n,k) := A278101(n,k) for k = 1..A278102(n), read by rows.

Original entry on oeis.org

1, 4, 2, 9, 8, 3, 16, 8, 25, 18, 12, 36, 32, 27, 20, 49, 32, 64, 50, 48, 45, 81, 72, 100, 98, 75, 121, 98, 144, 128, 108, 169, 162, 147, 125, 196, 162, 225, 200, 192, 180, 256, 242, 289, 288, 243, 324, 288, 361, 338, 300, 400, 392, 363, 320, 441, 392, 484, 450, 432
Offset: 1

Views

Author

Jason Kimberley, Nov 15 2016

Keywords

Comments

Each row is the longest strictly decreasing prefix of the corresponding row of A278101.

Examples

			The first 23 rows are:
1;
4, 2;
9, 8, 3;
16, 8;
25, 18, 12;
36, 32, 27, 20;
49, 32;
64, 50, 48, 45;
81, 72;
100, 98, 75;
121, 98;
144, 128, 108;
169, 162, 147, 125;
196, 162;
225, 200, 192, 180;
256, 242;
289, 288, 243;
324, 288;
361, 338, 300;
400, 392, 363, 320;
441, 392;
484, 450, 432, 405, 384;
529, 512, 507, 500, 486, 448;
		

References

  • R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, Square-free rank of integers, submitted.

Crossrefs

Programs

  • Magma
    A277647:=func;
    A278101_row:=funcA277647(n,k):k in[1..n^2]|IsSquarefree(k)]>;
    A278103_row:=funcA278101_row(n) >;
    &cat[A278103_row(n):n in[1..23]];
  • Mathematica
    Map[TakeWhile[FoldList[Function[s, Boole[s < 0] #2][#2 - #1] &, #], # > 0 &] &, #] &@ Map[DeleteCases[#, 0] &, Table[Boole[SquareFreeQ@ k] k Floor[n/Sqrt@ k]^2, {n, 23}, {k, n^2}] ] // Flatten (* Michael De Vlieger, Nov 24 2016 *)

Formula

T(n,k) = A278104(n,k) * A005117(k) where this triangle and A278104 both have row length sequence A278102.

A278118 Irregular triangle T(n,k) = A278113(n,k) for 1 <= k <= A278116(n), read by rows.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 2, 5, 4, 3, 2, 6, 4, 3, 7, 5, 8, 6, 9, 7, 5, 4, 3, 10, 8, 6, 5, 11, 8, 6, 5, 12, 9, 13, 10, 14, 11, 8, 15, 12, 9, 16, 13, 10, 8, 6, 17, 13, 10, 18, 14, 19, 15, 20, 16, 12, 10, 21, 17, 13, 22, 17, 13, 23, 18, 24, 19, 25, 20, 15, 26, 21, 16, 13, 27, 22, 17, 14, 11, 10
Offset: 1

Views

Author

Jason Kimberley, Feb 12 2017

Keywords

Comments

This triangle lists the "descending sequences for rank 1" of Eggleton et al.

Examples

			For example, 6 sqrt(2) > 4 sqrt(3) > 3 sqrt(5), because 72 > 48 > 45.
The first six rows are:
1;
2, 1;
3, 2, 1;
4, 3, 2;
5, 4, 3, 2;
6, 4, 3;
		

References

  • R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, Square-free rank of integers, submitted.

Crossrefs

Cf. A278104.

Programs

  • Magma
    A278112:=func;
    A278115_row:=funcA278112(n,p)^2*p:p in PrimesUpTo(2*n^2)]>;
    A278116:=funcA278115_row(n)>;
    A278118_row:=funcA278112(n,NthPrime(k)):k in[1..A278116(n)]]>;
    [A278118_row(n):n in[1..20]];
  • Mathematica
    Function[w, MapIndexed[Take[w[[First@ #2, 1]], 1 + Length@ TakeWhile[ Differences@ #1, # < 0 &]] &, w[[All, -1]]]]@ Table[Function[k, Function[p, {#, p #^2} &@ Floor[n Sqrt[2/p]]]@ Prime@ k]@ Range@ PrimePi[2 n^2], {n, 27}] (* Michael De Vlieger, Feb 17 2017 *)

Formula

From A278113: T(n,k) sqrt(prime(k)) <= n sqrt(2) < (T(n,k)+1) sqrt(prime(k)).
Here, we also have:
T(n,1) sqrt(2) > T(n,2) sqrt(3) > ... > T(n,A278116(n)) sqrt(prime(A278116(n))).
Showing 1-3 of 3 results.