A277515 Smallest prime p such that n sqrt(2) < m sqrt(p) < (n+1) sqrt(2) for some integer m.
3, 3, 3, 3, 7, 3, 3, 3, 3, 13, 3, 3, 3, 3, 3, 7, 3, 3, 3, 3, 11, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 11, 3, 3, 3, 3, 3, 13, 3, 3, 3, 3, 7, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 7, 3, 3, 3, 3, 7, 3, 3, 3, 3, 3, 7, 3, 3, 3, 3, 11, 3, 3, 3, 3, 3, 7, 3, 3, 3, 3, 13, 3, 3, 3, 3, 3, 7, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3, 5, 3, 3
Offset: 1
Examples
a(5)=7 because 3 r(5) < 4 r(3) < 5 r(2) < 3 r(7) < 6 r(2) < 5 r(3) < 4 r(5), where r(x) is the square root of x.
References
- R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, Square-free rank of integers, submitted.
Links
- Jason Kimberley, Table of n, a(n) for n = 1..10000
Programs
-
Magma
function A277515(n) p := 2; lower := 2*n^2; upper := 2*(n+1)^2; repeat p := NextPrime(p); m := Isqrt(upper div p); until p*m^2 gt lower; return p; end function; [A277515(n):n in[1..100]];
-
Mathematica
f[n_] := Block[{p = 2}, While[ Ceiling[ Sqrt[2 n^2/p]] != Floor[ Sqrt[2 (n + 1)^2/p]], p = NextPrime@ p]; p]; Array[f, 80] (* Robert G. Wilson v, Nov 17 2016 *)
Comments