A278118 Irregular triangle T(n,k) = A278113(n,k) for 1 <= k <= A278116(n), read by rows.
1, 2, 1, 3, 2, 1, 4, 3, 2, 5, 4, 3, 2, 6, 4, 3, 7, 5, 8, 6, 9, 7, 5, 4, 3, 10, 8, 6, 5, 11, 8, 6, 5, 12, 9, 13, 10, 14, 11, 8, 15, 12, 9, 16, 13, 10, 8, 6, 17, 13, 10, 18, 14, 19, 15, 20, 16, 12, 10, 21, 17, 13, 22, 17, 13, 23, 18, 24, 19, 25, 20, 15, 26, 21, 16, 13, 27, 22, 17, 14, 11, 10
Offset: 1
Examples
For example, 6 sqrt(2) > 4 sqrt(3) > 3 sqrt(5), because 72 > 48 > 45. The first six rows are: 1; 2, 1; 3, 2, 1; 4, 3, 2; 5, 4, 3, 2; 6, 4, 3;
References
- R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, Square-free rank of integers, submitted.
Links
- Jason Kimberley, Table of i, a(i) for i = 1..10104 (T(n,k) for n = 1..3333)
Crossrefs
Cf. A278104.
Programs
-
Magma
A278112:=func
; A278115_row:=func A278112(n,p)^2*p:p in PrimesUpTo(2*n^2)]>; A278116:=func A278115_row(n)>; A278118_row:=func A278112(n,NthPrime(k)):k in[1..A278116(n)]]>; [A278118_row(n):n in[1..20]]; -
Mathematica
Function[w, MapIndexed[Take[w[[First@ #2, 1]], 1 + Length@ TakeWhile[ Differences@ #1, # < 0 &]] &, w[[All, -1]]]]@ Table[Function[k, Function[p, {#, p #^2} &@ Floor[n Sqrt[2/p]]]@ Prime@ k]@ Range@ PrimePi[2 n^2], {n, 27}] (* Michael De Vlieger, Feb 17 2017 *)
Comments