A278141 Numerators of partial sums of a Ramanujan series converging to 2^(3/2)/(sqrt(Pi)*Gamma(3/4)^2) given in A278146.
1, 265, 1096065, 281858265, 18519577975665, 4748934018906441, 19474365987782658225, 4989739877102195271225, 5235591401647346852339166225, 1341015791319444602368386319225, 5495144390631448939048252704196225, 1407253983507773608409169421000239225, 92253220393640211712365553562313715740225
Offset: 0
Examples
The rationals begin: 1, 265/256, 1096065/1048576, 281858265/268435456, 18519577975665/17592186044416, 4748934018906441/4503599627370496, 19474365987782658225/18446744073709551616, ... The value of the series is (see A278143) 2^(3/2)/(sqrt(Pi)*Gamma(3/4)^2) = 1.06267989991... .
References
- G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..100
Programs
-
Mathematica
Numerator[Table[ Sum[ (1 + 8*k)*(Binomial[-1/4, k])^4 , {k, 0, n}] , {n, 0, 25}]] (* G. C. Greubel, Jan 09 2017 *)
-
PARI
for(n=0,10, print1( numerator( sum(k=0,n, (1+8*k)*(binomial(-1/4,k))^4)), ", ")) \\ G. C. Greubel, Jan 09 2017
Formula
a(n) = numerator(r(n)), with the rationals r(n) = Sum_{k=0..n} (1+8*k)*(risefac(1/4,k)/k!)^4. The rising factorial has been defined in a comment above.
a(n) = Sum_{k=0..n} (1+8*k)*(binomial(-1/4,k))^4.
Comments