cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A278178 a(n) is the numerator of intersection number , n>=2.

Original entry on oeis.org

7, 1225, 1816871, 7723802625, 8591613499103635, 23107999588635836875, 446563431744711553183786875, 17418085137491657842253233328125, 1311214792748795041469921338623972253125, 169160593483166517029276275055903719700625000, 9261817633933021190882924368962406588490587588265625
Offset: 2

Views

Author

Gheorghe Coserea, Nov 13 2016

Keywords

Comments

For 'intersection numbers' see Section 1 in Itzykson and Zuber paper.

Examples

			7/240, 1225/144, 1816871/48, 7723802625/8, 8591613499103635/96, ...
		

Crossrefs

Cf. A269418, A269419, A278179 (denominator).

Programs

  • PARI
    A269418_seq(N) = {
      my(y  = vector(N)); y[1] = 1/48;
      for (n = 2, N,
           y[n] = (25*(n-1)^2-1)/48 * y[n-1] + 1/2*sum(k = 1, n-1, y[k]*y[n-k]));
      concat(-1, y);
    };
    seq(N) = {
      my(y = A269418_seq(N+2));
      vector(N, g, (3*g)! * 4^(g+1) / ((5*g)*(5*g+2)) * y[g+2]);
    };
    apply(numerator, seq(12))

Formula

a(n) = numerator((3*n-3)!*4^n/((5*n-5)*(5*n-3)) * A269418(n)/A269419(n)) for n >= 2.
Showing 1-1 of 1 results.