A278223 Least number with the same prime signature as the n-th odd number: a(n) = A046523(2n-1).
1, 2, 2, 2, 4, 2, 2, 6, 2, 2, 6, 2, 4, 8, 2, 2, 6, 6, 2, 6, 2, 2, 12, 2, 4, 6, 2, 6, 6, 2, 2, 12, 6, 2, 6, 2, 2, 12, 6, 2, 16, 2, 6, 6, 2, 6, 6, 6, 2, 12, 2, 2, 30, 2, 2, 6, 2, 6, 12, 6, 4, 6, 8, 2, 6, 2, 6, 24, 2, 2, 6, 6, 6, 12, 2, 2, 12, 6, 2, 6, 6, 2, 30, 2, 4, 12, 2, 12, 6, 2, 2, 6, 6, 6, 24, 2, 2, 30, 2, 2, 6, 6, 6, 12, 6, 2, 6, 6, 6, 6, 6, 2, 36, 2, 2
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
a[n_] := Times @@ (Prime[Range[Length[f = FactorInteger[2*n - 1]]]]^Sort[f[[;; , 2]], Greater]); a[1] = 1; Array[a, 100] (* Amiram Eldar, Jul 23 2023 *)
-
Python
from sympy import factorint def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def a(n): return a046523(2*n - 1) # Indranil Ghosh, May 11 2017
-
Python
from math import prod from sympy import prime, factorint def A278223(n): return prod(prime(i+1)**e for i,e in enumerate(sorted(factorint((n<<1)-1).values(),reverse=True))) # Chai Wah Wu, Sep 16 2022
-
Scheme
(define (A278223 n) (A046523 (+ n n -1))) (define (A278223 n) (A046523 (A064216 n)))
Comments