cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A278160 Least number with the prime signature of ((n+1)^2 - 1).

Original entry on oeis.org

2, 8, 6, 24, 6, 48, 12, 48, 12, 120, 6, 120, 30, 96, 30, 288, 6, 360, 30, 120, 30, 240, 12, 240, 72, 120, 24, 840, 6, 960, 30, 192, 210, 360, 30, 360, 30, 240, 30, 1680, 6, 840, 60, 120, 60, 480, 12, 1440, 60, 360, 30, 1080, 30, 2160, 210, 240, 30, 840, 6, 840, 60, 384, 420, 1920, 30, 840, 30, 840, 30, 5040, 6, 720, 60, 120, 420, 840, 30, 3360, 48, 480, 48
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2016

Keywords

Crossrefs

Cf. A001359 (positions of 6's).

Programs

  • Mathematica
    Table[Times @@ MapIndexed[(Prime@ First@ #2)^#1 &, #] &@ If[Length@ # == 1 && #[[1, 1]] == 1, {0}, Reverse@ Sort@ #[[All, -1]]] &@ FactorInteger[ (n + 1)^2 - 1], {n, 120}] (* Michael De Vlieger, Nov 21 2016 *)
  • Scheme
    (define (A278160 n) (A046523 (A005563 n)))
    (define (A005563 n) (* n (+ 2 n)))

Formula

a(n) = A046523(A005563(n)) = A046523(((n+1)^2)-1).

A278242 Least number with the prime signature of 2^n + 1.

Original entry on oeis.org

2, 2, 2, 4, 2, 6, 6, 6, 2, 24, 12, 6, 6, 6, 30, 60, 2, 6, 210, 6, 6, 60, 30, 6, 30, 210, 210, 240, 6, 30, 4620, 6, 6, 420, 210, 2310, 210, 30, 210, 60, 6, 30, 30030, 6, 30, 9240, 2310, 30, 30, 30, 9240, 4620, 30, 30, 30030, 4620, 30, 420, 30, 210, 210, 6, 2310, 9240, 6, 30030, 30030, 30, 60, 420, 60060, 30, 2310, 30, 2310, 60060, 210, 30030, 446185740, 6, 30
Offset: 0

Views

Author

Antti Karttunen, Nov 19 2016

Keywords

Crossrefs

Cf. A073936 (positions of 6's), A092559 (positions of 4's and 6's).
Cf. also A278240.

Programs

  • Mathematica
    Table[Times @@ MapIndexed[(Prime@ First@ #2)^#1 &, #] &@ If[Length@ # == 1 && #[[1, 1]] == 1, {0}, Reverse@ Sort@ #[[All, -1]]] &@ FactorInteger[ 2^n + 1], {n, 0, 80}] (* Michael De Vlieger, Nov 21 2016 *)
  • PARI
    A046523(n) = my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]) \\ from Charles R Greathouse IV, Aug 17 2011
    A278242(n) = A046523((2^n)+1);
    for(n=0, 257, write("b278242.txt", n, " ", A278242(n)));
    
  • Scheme
    (define (A278242 n) (A046523 (A000051 n)))

Formula

a(n) = A046523(A000051(n)).
Showing 1-2 of 2 results.