A278290 Number of neighbors of each new term in a square array read by antidiagonals.
0, 1, 2, 1, 4, 2, 1, 4, 4, 2, 1, 4, 4, 4, 2, 1, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2
Offset: 1
Examples
The corner of the square array read by antidiagonals upwards begins: 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,... 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,... 1, 4, 4, 4, 4, 4, 4, 4, 4, 4,... 1, 4, 4, 4, 4, 4, 4, 4, 4,... 1, 4, 4, 4, 4, 4, 4, 4,... 1, 4, 4, 4, 4, 4, 4,... 1, 4, 4, 4, 4, 4,... 1, 4, 4, 4, 4,... 1, 4, 4, 4,... 1, 4, 4,... 1, 4,... 1,... ..
Crossrefs
Programs
-
Mathematica
Table[Boole[# > 1] + 2 Boole[k > 1] + Boole[And[# > 1, k > 1]] &[n - k + 1], {n, 14}, {k, n}] // Flatten (* or *) Table[Boole[n > 1] (Map[Mod[#, n] &, Range@ n] /. {k_ /; k > 1 -> 4, 0 -> 2}), {n, 14}] // Flatten (* Michael De Vlieger, Nov 23 2016 *)
Comments