cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278294 a(n) = first term in A278291 with n prime factors.

Original entry on oeis.org

3, 10, 28, 136, 945, 5265, 29889, 50625, 203392, 3290625, 6082048, 32536000, 326481921, 3274208001, 6929459200, 72523096065, 37694578689, 471672487936, 11557226700801, 54386217385984, 50624737509376, 275892612890625, 4870020829413376, 68091093855502336, 2280241934368768
Offset: 1

Views

Author

Ely Golden, Nov 16 2016

Keywords

Comments

a(n)-1 is the first term in A115186 with n prime factors, by definition.
If f(n) is the index of the first occurrence of n in A278293, a(n)=A278291(f(n)), by definition.

Examples

			a(2)=10, as it is the first term of A278291 with 2 prime factors.
a(3)=28, as it is the first term of A278291 with 3 prime factors.
		

Crossrefs

Cf. A115186.

Programs

  • Java
    import java.math.BigInteger;
    public class A278294{
    public static void main(String[] args)throws Exception{
        BigInteger dim0=numberOfPrimeFactors(BigInteger.valueOf(2));//note that this method must be manually implemented by the user
        BigInteger dim1;
        BigInteger maxdim=BigInteger.ONE;
        BigInteger counter=BigInteger.valueOf(3);
        long index=1;
        while(index<=20){
          dim1=numberOfPrimeFactors(counter);
          if(dim1.equals(dim0)&&maxdim.testBit(dim1.intValue())==false){System.out.println(dim1+" "+counter);maxdim=maxdim.setBit(dim1.intValue());index++;}
          dim0=dim1;
          counter=counter.add(BigInteger.ONE);
        }
      }
    }
    
  • Mathematica
    Function[w, Flatten@ Map[w[[#]] &, #] &@ Map[First, DeleteCases[#, w_ /; Length@ w == 0]] &@ Map[Position[w, k_ /; PrimeOmega@k == #] &, Range@ 9]]@ Select[Range[10^6], Equal @@ Map[PrimeOmega, {# - 1, #}] &] (* Michael De Vlieger, Dec 01 2016 *)
  • SageMath
    def bigomega(x):
        s=0;
        f=list(factor(x));
        for c in range(len(f)):
            s+=f[c][1]
        return s;
    dim0=bigomega(2);
    maxdim=1
    counter=3
    index=1
    while(index<=20):
        dim1=bigomega(counter);
        if((dim1==dim0)&((maxdim&(1<