A278294 a(n) = first term in A278291 with n prime factors.
3, 10, 28, 136, 945, 5265, 29889, 50625, 203392, 3290625, 6082048, 32536000, 326481921, 3274208001, 6929459200, 72523096065, 37694578689, 471672487936, 11557226700801, 54386217385984, 50624737509376, 275892612890625, 4870020829413376, 68091093855502336, 2280241934368768
Offset: 1
Keywords
Examples
a(2)=10, as it is the first term of A278291 with 2 prime factors. a(3)=28, as it is the first term of A278291 with 3 prime factors.
Links
- Ely Golden, Table of n, a(n) for n = 1..25
Crossrefs
Cf. A115186.
Programs
-
Java
import java.math.BigInteger; public class A278294{ public static void main(String[] args)throws Exception{ BigInteger dim0=numberOfPrimeFactors(BigInteger.valueOf(2));//note that this method must be manually implemented by the user BigInteger dim1; BigInteger maxdim=BigInteger.ONE; BigInteger counter=BigInteger.valueOf(3); long index=1; while(index<=20){ dim1=numberOfPrimeFactors(counter); if(dim1.equals(dim0)&&maxdim.testBit(dim1.intValue())==false){System.out.println(dim1+" "+counter);maxdim=maxdim.setBit(dim1.intValue());index++;} dim0=dim1; counter=counter.add(BigInteger.ONE); } } }
-
Mathematica
Function[w, Flatten@ Map[w[[#]] &, #] &@ Map[First, DeleteCases[#, w_ /; Length@ w == 0]] &@ Map[Position[w, k_ /; PrimeOmega@k == #] &, Range@ 9]]@ Select[Range[10^6], Equal @@ Map[PrimeOmega, {# - 1, #}] &] (* Michael De Vlieger, Dec 01 2016 *)
-
SageMath
def bigomega(x): s=0; f=list(factor(x)); for c in range(len(f)): s+=f[c][1] return s; dim0=bigomega(2); maxdim=1 counter=3 index=1 while(index<=20): dim1=bigomega(counter); if((dim1==dim0)&((maxdim&(1<
Comments