A278330 Number of tilings of a 5 X n rectangle using n pentominoes of shapes P, U, X.
1, 0, 2, 1, 12, 10, 59, 52, 276, 349, 1404, 1984, 7019, 11148, 35686, 62181, 182776, 339350, 942507, 1841208, 4887096, 9921685, 25442304, 53190380, 132928715, 284198328, 696276202, 1514363221, 3654567764, 8053235650, 19212546163, 42762014028, 101125071372
Offset: 0
Examples
a(2) = 2, a(3) = 1: .___. .___. ._____. | | | | | ._. | | ._| |_. | |_| |_| |_| | | |_| |_ _| | | | | | |_| | |___| |___| |_____| .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Pentomino
- Index entries for linear recurrences with constant coefficients, signature (0,2,2,8,4,21,-8,-4,-6,0,-16,-8).
Crossrefs
Programs
-
Maple
a:= n-> (Matrix(12, (i, j)-> `if`(i+1=j, 1, `if`(i=12, [-8, -16, 0, -6, -4, -8, 21, 4, 8, 2, 2, 0][j], 0)))^n. <<1, 0, 2, 1, 12, 10, 59, 52, 276, 349, 1404, 1984>>)[1, 1]: seq(a(n), n=0..35);
Formula
G.f.: -(4*x^6+x^3-1) / (8*x^12 +16*x^11 +6*x^9 +4*x^8 +8*x^7 -21*x^6 -4*x^5 -8*x^4 -2*x^3 -2*x^2+1).
a(n) mod 2 = A079978(n).