cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A276799 a(n) = floor(n*t^2) - A003145(n), where t = 1.8392867... is the tribonacci constant A058265.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2016

Keywords

Comments

a(n) is in {-1, 0, 1, 2}, but the first n for which -1 appears is n = 329. - Jeffrey Shallit, Nov 19 2016

Crossrefs

Cf. A003144, A003145, A003146, A275926, A058265, A276800, A277721, A278352 (positions of -1's).

Formula

a(n) = A277722(n) - A003145(n). - R. J. Mathar, Nov 02 2016

A275158 Numbers n such that A003144(n) = floor(alpha*n) + 1, where alpha = 1.839... is the positive real zero of x^3-x^2-x-1.

Original entry on oeis.org

12737, 13241, 15873, 16377, 32250, 32754, 48627, 49131, 68140, 78749, 79253, 81885, 82389, 84517, 85021, 98262, 98766, 101398, 101902, 114639, 115143, 117775, 118279, 134152, 134656, 153665, 154169, 170042, 170546, 200164, 200668, 203300, 203804, 219677, 220181, 222813, 236054, 236558, 239190
Offset: 1

Views

Author

Jeffrey Shallit, Nov 19 2016

Keywords

Comments

Also positions of -1's in A275926. - N. J. A. Sloane, Mar 16 2019

Crossrefs

A278353 Numbers n such that A003146(n) = floor(alpha^3*n)+1, where alpha = 1.839... is the positive real zero of x^3-x^2-x-1.

Original entry on oeis.org

2047, 2128, 2551, 2632, 5183, 5264, 7815, 7896, 10951, 12656, 12737, 13160, 13241, 13583, 13664, 15792, 15873, 16296, 16377, 18424, 18505, 18928, 19009, 21560, 21641, 24696, 24777, 27328, 27409, 32169, 32250, 32673, 32754, 35305, 35386, 35809, 37937, 38018, 38441, 38522, 41073, 41154, 43705, 43786
Offset: 1

Views

Author

Jeffrey Shallit, Nov 19 2016

Keywords

Crossrefs

Showing 1-3 of 3 results.