A278388 Lexicographically earliest sequence such that (i*2^a(i)) AND (j*2^a(j)) = 0 for any distinct i and j (AND stands for the bitwise AND operator).
0, 0, 2, 2, 5, 7, 10, 3, 13, 14, 18, 20, 24, 27, 31, 10, 35, 36, 41, 34, 44, 48, 53, 55, 60, 64, 69, 72, 77, 81, 86, 15, 51, 42, 61, 89, 93, 95, 101, 102, 108, 109, 115, 119, 123, 128, 134, 136, 138, 143, 145, 149, 155, 160, 166, 169, 175, 180, 186, 190, 196
Offset: 1
Examples
The following table depicts the first terms, alongside the corresponding polyominoes ("X" denotes a filled square, "_" denotes an empty square): n n in binary a(n) n as a polyomino shifted by a(n) to the right -- ----------- ---- --------------------------------------------- 1 1 0 X 2 10 0 _X 3 11 2 XX 4 100 2 __X 5 101 5 X_X 6 110 7 _XX 7 111 10 XXX 8 1000 3 ___X 9 1001 13 X__X 10 1010 14 _X_X 11 1011 18 XX_X 12 1100 20 __XX 13 1101 24 X_XX 14 1110 27 _XXX 15 1111 31 XXXX 16 10000 10 ____X 17 10001 35 X___X 18 10010 36 _X__X
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A275152.
Comments