A278400 G.f.: Im((i; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
-1, -1, -1, 0, 0, 1, 2, 3, 4, 6, 6, 8, 9, 10, 10, 11, 10, 10, 8, 6, 2, 0, -7, -12, -20, -28, -39, -48, -62, -74, -90, -104, -122, -136, -156, -171, -190, -204, -222, -232, -247, -252, -260, -258, -258, -244, -232, -204, -176, -130, -84, -15, 54, 148, 244, 368
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
Programs
-
Maple
with(gfun): series(add((-1)^(n+1)*x^(n*(2*n+1))/mul(1 - x^k, k = 1..2*n+1), n = 0..6), x, 100): seriestolist(%); # Peter Bala, Feb 06 2021
-
Mathematica
Im[(QPochhammer[I, x] + O[x]^60)[[3]]]
Formula
(i; x)_inf is the g.f. for A278399(n) + i*a(n).
G.f.: Sum_{n >= 0} (-1)^(n+1)*x^(n*(2*n+1))/Product_{k = 1..2*n+1} 1 - x^k. - Peter Bala, Feb 06 2021
Comments