cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A278415 a(n) = Sum_{k=0..n} binomial(n, 2k)*binomial(n-k, k)*(-1)^k.

Original entry on oeis.org

1, 1, 0, -5, -16, -24, 15, 197, 576, 724, -1200, -8832, -22801, -21293, 76440, 408795, 922368, 499104, -4446588, -19025060, -37012416, -1673992, 245604832, 880263936, 1441226991, -908700649, -13088509200, -40222012703, -52991533744, 88167061704, 678172355415, 1805175708261, 1747974632448, -6237554623536, -34300087628480
Offset: 0

Views

Author

Zhi-Wei Sun, Nov 21 2016

Keywords

Comments

Conjecture: For any prime p > 3 and positive integer n, the number (a(p*n)-a(n))/(p*n)^2 is always a p-adic integer.
We are able to show that for any prime p > 3 and positive integer n the number (a(p*n)-a(n))/(p^2*n) is always a p-adic integer.
See also A275027 and A278405 for similar conjectures.

Examples

			a(3) = -5 since a(3) = C(3, 2*0)*C(3-0, 0)(-1)^0 + C(3,2*1)*C(3-1,1)(-1)^1 = 1 - 6 = -5.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Binomial[n,2k]Binomial[n-k,k](-1)^k,{k,0,n}]
    Table[a[n],{n,0,34}]
Showing 1-1 of 1 results.