A278405 a(n) = Sum_{k=0..n} binomial(n,2k)^2*binomial(n-k,k).
1, 1, 2, 19, 110, 476, 2477, 15093, 86830, 485290, 2826902, 16857116, 100034453, 594833357, 3574477090, 21611465819, 130955824174, 796195223398, 4860425688176, 29760574848750, 182655048136510, 1123720751229858, 6929124085148938, 42811398244528788
Offset: 0
Keywords
Examples
a(3) = 19 since a(3) = C(3,2*0)^2*C(3-0,0) + C(3,2*1)^2*C(3-1,1) = 1 + 3^2*2 = 19. G.f. = 1 + x + 2*x^2 + 19*x^3 + 110*x^4 + 476*x^5 + 2477*x^6 + 15093*x^7 + ...
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..200
- Zhi-Wei Sun, Supercongruences involving Lucas sequences, arXiv:1610.03384 [math.NT], 2016.
Programs
-
Mathematica
a[n_]:=a[n]=Sum[Binomial[n,2k]^2*Binomial[n-k,k],{k,0,n/2}] Table[a[n],{n,0,27}]
Comments