A278419 Decimal expansion of sum of cubes of reciprocals of nonprime numbers.
1, 0, 2, 7, 2, 9, 4, 2, 6, 3, 8, 6, 0, 1, 5, 0, 7, 4, 8, 9, 7, 6, 6, 2, 4, 8, 4, 6, 8, 4, 5, 7, 4, 3, 2, 8, 9, 7, 8, 9, 5, 7, 4, 1, 7, 0, 4, 1, 4, 3, 4, 9, 5, 9, 1, 9, 0, 3, 5, 9, 9, 5, 3, 8, 6, 4, 0, 2, 0, 6, 6, 1, 6, 2, 5, 8, 1, 8, 3, 5, 0, 2, 5, 5, 0, 8, 2, 1, 6, 7, 3, 0, 7, 2, 3, 6, 2, 6, 9, 7, 5, 9, 9, 4
Offset: 1
Examples
1.0272942638601507489766248468457432897895741704143495919035995386402...
Links
- Eric Weisstein's World of Mathematics, Zeta Function.
- Eric Weisstein's World of Mathematics, Prime Zeta Function.
Crossrefs
Cf. A275647.
Programs
-
Mathematica
RealDigits[Zeta[3] - PrimeZetaP[3], 10, 104][[1]]
-
PARI
zeta(3) - sumeulerrat(1/p, 3) \\ Amiram Eldar, Mar 19 2021
Formula
Sum_{n>=1} 1/n^3 - Sum_{n>=1} 1/prime(n)^3.
Equals zeta(3) - primezetaP(3).
Sum of cubes of reciprocals of composite numbers = zeta(3) - primezetaP(3) - 1 = 0.02729426386...