cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A281261 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 2, 2, 1, 5, 2, 5, 9, 2, 1, 15, 14, 2, 7, 35, 20, 2, 1, 28, 70, 27, 2, 9, 84, 126, 35, 2, 1, 45, 210, 210, 44, 2, 11, 165, 462, 330, 54, 2, 1, 66, 495, 924, 495, 65, 2, 13, 286, 1287, 1716, 715, 77, 2, 1, 91, 1001, 3003, 3003, 1001, 90, 2, 15, 455, 3003, 6435, 5005, 1365, 104, 2, 1, 120, 1820, 8008, 12870, 8008, 1820, 119, 2
Offset: 1

Views

Author

Gheorghe Coserea, Jan 18 2017

Keywords

Comments

Row n>1 contains floor((n+3)/2) terms.

Examples

			A(x;t) = x + (2*t+2)*x^2 + (t^2+5*t+2)*x^3 + (5*t^2+9*t+2)*x^4 + ...
Triangle starts:
n\k  [1]      [2]      [3]      [4]      [5]      [6]      [7]      [8]
[1]  1;
[2]  2,       2;
[3]  1,       5,       2;
[4]  5,       9,       2;
[5]  1,       15,      14,      2;
[6]  7,       35,      20,      2;
[7]  1,       28,      70,      27,      2;
[8]  9,       84,      126,     35,      2;
[9]  1,       45,      210,     210,     44,      2;
[10] 11,      165,     462,     330,     54,      2;
[11] 1,       66,      495,     924,     495,     65,      2;
[12] 13,      286,     1287,    1716,    715,     77,      2;
[13] 1,       91,      1001,    3003,    3003,    1001,    90,      2;
[14] 15,      455,     3003,    6435,    5005,    1365,    104,     2;
[15] ...
		

Programs

  • Mathematica
    Reverse[CoefficientList[#, t]]& /@ CoefficientList[x*((1-t)*x^3 + (t^2 - 2*t - 1)*x^2 + (2*t - 1)*x + 1)/((t-1)*x^3 + (3-t)*x^2 - 3*x + 1) + O[x]^16, x] // Rest // Flatten (* Jean-François Alcover, Feb 18 2019 *)
  • PARI
    N=16; x='x+O('x^N); concat(apply(p->Vec(p),  Vec(Ser(x*((1-t)*x^3 + (t^2-2*t-1)*x^2 + (2*t-1)*x + 1)/((t-1)*x^3 + (3-t)*x^2 - 3*x + 1)))))
    
  • PARI
    N = 14; concat(1, concat(vector(N, n, Vec(substpol(((1+t)^(n+2) + (1-t)^(n+2))/2 - t^2 + 1, t^2, t)))))

Formula

A(x;t) = Sum{n>=1} P_n(t)*x^n = x*((1-t)*x^3 + (t^2-2*t-1)*x^2 + (2*t-1)*x + 1)/((t-1)*x^3 + (3-t)*x^2 - 3*x + 1).
A278457(x;t) = serreverse(A(-x;t))(-x).
A151821(n) = P_n(1), A213667(n) = P_n(2).
P_n(t^2) = ((1+t)^(n+1) + (1-t)^(n+1))/2 - t^2 + 1, for n>1.
Showing 1-1 of 1 results.