A278458 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
1, 2, 2, 9, 15, 8, 64, 156, 144, 52, 625, 2050, 2675, 1730, 472, 7776, 32430, 55000, 50310, 25108, 5504, 117649, 599319, 1258775, 1484245, 1052184, 428036, 78416, 2097152, 12669496, 31902416, 46103680, 42064736, 24421096, 8389552, 1320064, 43046721, 301574340, 888996066, 1524644856, 1698413409, 1269814980, 625219644, 185935104, 25637824
Offset: 1
Examples
A(x;t) = x + (2*t+2)*x^2/2! + (9*t^2+15*t+8)*x^3/3! + (64*t^3+156*t^2+144*t+52)*x^4/4! + ... Triangle starts: n\k [1] [2] [3] [4] [5] [6] [7] [1] 1; [2] 2, 2; [3] 9, 15, 8; [4] 64, 156, 144, 52; [5] 625, 2050, 2675, 1730, 472; [6] 7776, 32430, 55000, 50310, 25108, 5504; [7] 117649, 599319, 1258775, 1484245, 1052184, 428036, 78416; [8] ...
Links
- Gheorghe Coserea, Rows n = 1..101, flattened.
- F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
Crossrefs
Column k=1 give A000169
Programs
-
Mathematica
m = 10; (Reverse[CoefficientList[#, t]]& /@ CoefficientList[InverseSeries[Log[x + Exp[t Log[1+x]]] - (t-1) Log[1+x] - x + O[x]^m], x]) Range[0, m-1]! // Rest // Flatten (* Jean-François Alcover, Sep 28 2019 *)
-
PARI
N=10; x = 'x + O('x^N); t='t; concat(apply(p->Vec(p), Vec(serlaplace(serreverse(log(x + exp(t*log(1+x))) - (t-1)*log(1+x) - x)))))