cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278464 Total number of parts of the second sort in all partitions of n into two sorts of parts.

Original entry on oeis.org

0, 1, 5, 17, 53, 145, 385, 957, 2333, 5493, 12741, 28941, 65049, 144225, 317229, 691457, 1497901, 3224145, 6906969, 14726701, 31282421, 66211253, 139720445, 294007373, 617154865, 1292516577, 2701451621, 5635565761, 11736442005, 24403092657, 50666528209
Offset: 0

Views

Author

Alois P. Heinz, Nov 22 2016

Keywords

Comments

a(n) is odd for n > 0.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1/2, 0], `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, (p-> p+[0, p[1]])(2*b(n-i, i)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*Sum[x^t*Binomial[j, t], {t, 0, j}], {j, 0, n/i}]]]];
    a[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]] . Range[0, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} k * A256193(n,k).