A278464 Total number of parts of the second sort in all partitions of n into two sorts of parts.
0, 1, 5, 17, 53, 145, 385, 957, 2333, 5493, 12741, 28941, 65049, 144225, 317229, 691457, 1497901, 3224145, 6906969, 14726701, 31282421, 66211253, 139720445, 294007373, 617154865, 1292516577, 2701451621, 5635565761, 11736442005, 24403092657, 50666528209
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3309
- William Dugan, Sam Glennon, Paul E. Gunnells, Einar Steingrimsson, Tiered trees, weights, and q-Eulerian numbers, arXiv:1702.02446 [math.CO], Feb 2017
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1/2, 0], `if`(i<1, 0, b(n, i-1) +`if`(i>n, 0, (p-> p+[0, p[1]])(2*b(n-i, i))))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..35);
-
Mathematica
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*Sum[x^t*Binomial[j, t], {t, 0, j}], {j, 0, n/i}]]]]; a[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]] . Range[0, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=0..n} k * A256193(n,k).
Comments