A278495 a(n) = number of primes in range [n^2, (n+1)^2] that are leaves in "the least squares beanstalk" tree.
1, 2, 1, 2, 2, 2, 1, 1, 2, 4, 1, 2, 1, 3, 2, 4, 3, 3, 3, 5, 3, 2, 2, 4, 4, 4, 4, 3, 4, 4, 4, 4, 2, 3, 3, 2, 4, 2, 5, 4, 6, 3, 5, 4, 5, 5, 4, 6, 3, 3, 6, 8, 4, 5, 3, 5, 5, 5, 4, 6, 6, 7, 5, 5, 7, 6, 8, 8, 8, 8, 5, 5, 5, 8, 7, 7, 7, 3, 13, 5, 8, 6, 8, 7, 8, 5, 14, 7, 8, 8, 10, 7, 5, 8, 6, 7, 6, 9, 4, 10, 4, 9, 8, 6, 8, 8, 8, 6, 10, 11, 13, 9
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
istwo(n:int)=my(f); if(n<3, return(n>=0); ); f=factor(n>>valuation(n, 2)); for(i=1, #f[, 1], if(bitand(f[i, 2], 1)==1&&bitand(f[i, 1], 3)==3, return(0))); 1 isthree(n:int)=my(tmp=valuation(n, 2)); bitand(tmp, 1)||bitand(n>>tmp, 7)!=7 A002828(n)=if(issquare(n), !!n, if(istwo(n), 2, 4-isthree(n))) \\ From Charles R Greathouse IV, Jul 19 2011 A278495(n) = { my(s = 0); for(k=(n^2),(n+1)^2, if((isprime(k) && (A002828(1+k) <> 1) && (A002828(2+k) <> 2) && (A002828(3+k) <> 3) && (A002828(4+k) <> 4)),s = s+1) ); s; }; for(n=1, 10000, write("b278495.txt", n, " ", A278495(n)));
-
Scheme
(define (A278495 n) (let loop ((k (+ -1 (A000290 (+ 1 n)))) (s 0)) (if (= 1 (A010052 k)) s (loop (- k 1) (+ s (* (A010051 k) (if (zero? (A278216 k)) 1 0)))))))
Formula
For all n >= 1, a(n) <= A014085(n).
Comments