A278528 a(n) = number of the round in which n is removed in the Flavius sieve, 0 if it is never removed (when n is one of the terms of A000960).
0, 1, 0, 1, 2, 1, 0, 1, 3, 1, 2, 1, 0, 1, 4, 1, 2, 1, 0, 1, 3, 1, 2, 1, 5, 1, 0, 1, 2, 1, 6, 1, 3, 1, 2, 1, 4, 1, 0, 1, 2, 1, 7, 1, 3, 1, 2, 1, 0, 1, 5, 1, 2, 1, 4, 1, 3, 1, 2, 1, 8, 1, 0, 1, 2, 1, 9, 1, 3, 1, 2, 1, 6, 1, 4, 1, 2, 1, 0, 1, 3, 1, 2, 1, 5, 1, 10, 1, 2, 1, 0, 1, 3, 1, 2, 1, 4, 1, 7, 1, 2, 1, 11, 1, 3, 1, 2, 1, 0, 1, 5, 1, 2, 1, 4, 1, 3, 1, 2, 1
Offset: 1
Keywords
Links
Programs
-
Scheme
;; Very crude. Find it with two nested loops. (Maybe a closed form exists?) (define (A278528 n) (cond ((not (zero? (A278169 n))) 0) ((even? n) 1) (else (let searchrow ((row 2)) (let searchcol ((col 1)) (cond ((>= (A278507bi row col) n) (if (= (A278507bi row col) n) row (searchrow (+ 1 row)))) (else (searchcol (+ 1 col))))))))) ;; Code for A278507bi given in A278507.
Formula
Conjecture: a(n) = [C > 0] * C where we start with A := n, B := n - 1, C, m := 0 and until A = B consecutively apply m := m + 1, C := A - B, A := abs(A - m - (A mod m)), B := abs(B - m - (B mod m)). - Mikhail Kurkov, May 19 2025
Comments