A286535 Restricted growth sequence of A278535 (prime-signature of A253565).
1, 2, 2, 3, 2, 3, 4, 5, 2, 3, 4, 5, 4, 6, 6, 7, 2, 3, 4, 5, 4, 6, 6, 7, 4, 6, 8, 9, 6, 10, 9, 11, 2, 3, 4, 5, 4, 6, 6, 7, 4, 6, 8, 9, 6, 10, 9, 11, 4, 6, 8, 9, 8, 12, 12, 13, 6, 10, 12, 14, 9, 14, 13, 15, 2, 3, 4, 5, 4, 6, 6, 7, 4, 6, 8, 9, 6, 10, 9, 11, 4, 6, 8, 9, 8, 12, 12, 13, 6, 10, 12, 14, 9, 14, 13, 15, 4, 6, 8, 9, 8, 12, 12, 13, 8, 12, 16, 17, 12, 18
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
Programs
-
PARI
rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; }; write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); } A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); \\ After M. F. Hasler's code for A006530. A253550(n) = if(1==n, 1, (n/prime(A061395(n)))*prime(1+A061395(n))); A253560(n) = if(1==n, 1, (n*prime(A061395(n)))); A253565(n) = if(n<2,(1+n),if(!(n%2),A253550(A253565(n/2)),A253560(A253565((n-1)/2)))); \\ Would be better if memoized! A278535(n) = A046523(A253565(n)); write_to_bfile(0,rgs_transform(vector(65538,n,A278535(n-1))),"b286535.txt");