cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278555 Expansion of Product_{n>=1} (1 - x^(5*n))^12/(1 - x^n)^13 in powers of x.

Original entry on oeis.org

1, 13, 104, 637, 3276, 14808, 60541, 228124, 803010, 2667054, 8422715, 25446304, 73907808, 207209614, 562673618, 1484147681, 3811882087, 9553588317, 23407932874, 56161135485, 132132608899, 305240006266, 693150485885, 1548871015291, 3408852663762, 7395582677152
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2016

Keywords

Comments

In general, if m>0 and g.f. = Product_{k>=1} (1 - x^(5*k))^m/(1 - x^k)^(m+1) then a(n) ~ sqrt(4*m+5) * exp(Pi*sqrt(2*(4*m+5)*n/15)) / (4*sqrt(3)*5^((m+1)/2)*n). - Vaclav Kotesovec, Nov 24 2016

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ Product[(1 - x^(5n))^12/(1 - x^n)^13, {n, 25}],
    {x, 0, 25}], x] (* Robert G. Wilson v, Nov 23 2016 *)

Formula

G.f.: Product_{n>=1} (1 - x^(5*n))^12/(1 - x^n)^13.
A278559(n) = 5^2*63*A160460(n) + 5^5*52*a(n-1) + 5^7*63*A278556(n-2) + 5^10*6*A278557(n-3) + 5^12*A278558(n-4) for n >= 4.
a(n) ~ sqrt(53/15)*exp(sqrt(106*n/15)*Pi)/(62500*n). - Vaclav Kotesovec, Nov 24 2016