cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278556 Expansion of Product_{n>=1} (1 - x^(5*n))^18/(1 - x^n)^19 in powers of x.

Original entry on oeis.org

1, 19, 209, 1710, 11495, 66862, 347339, 1645875, 7221520, 29668595, 115116233, 424720338, 1498263563, 5076482415, 16583497160, 52399330389, 160586833362, 478482249548, 1388989067820, 3935549005725, 10901608510397, 29565343541110, 78604103339462
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2016

Keywords

Crossrefs

Cf. Product_{n>=1} (1 - x^(5*n))^k/(1 - x^n)^(k + 1): A160461 (k=1), A160462 (k=2), A160463 (k=3), A160506 (k=4), A071734 (k=5), A160460 (k=6), A160521 (k=7), A278555 (k=12), this sequence (k=18), A278557 (k=24), A278558 (k=30).

Programs

  • Mathematica
    CoefficientList[ Series[ Product[(1 - x^(5n))^18/(1 - x^n)^19, {n, 22}], {x, 0, 22}], x] (* Robert G. Wilson v, Nov 24 2016 *)

Formula

G.f.: Product_{n>=1} (1 - x^(5*n))^18/(1 - x^n)^19.
A278559(n) = 5^2*63*A160460(n) + 5^5*52*A278555(n-1) + 5^7*63*a(n-2) + 5^10*6*A278557(n-3) + 5^12*A278558(n-4) for n >= 4.
a(n) ~ sqrt(77/15) * exp(Pi*sqrt(154*n/15)) / (7812500*n). - Vaclav Kotesovec, Nov 28 2016