cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278579 Quadratic non-residues of 23: numbers n such that Jacobi(n,23) = -1.

Original entry on oeis.org

5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22, 28, 30, 33, 34, 37, 38, 40, 42, 43, 44, 45, 51, 53, 56, 57, 60, 61, 63, 65, 66, 67, 68, 74, 76, 79, 80, 83, 84, 86, 88, 89, 90, 91, 97, 99, 102, 103, 106, 107, 109, 111, 112, 113, 114, 120, 122, 125, 126, 129, 130, 132, 134, 135, 136, 137, 143, 145, 148, 149
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2016

Keywords

Comments

Important for the study of Ramanujan numbers A000594.

References

  • Wilton, John Raymond. "Congruence properties of Ramanujan's function τ(n)." Proceedings of the London Mathematical Society 2.1 (1930): 1-10. See page 1.

Crossrefs

Cf. A028736, A000594, A063987, A278580, A028759 (=first 22 terms).
For the primes in this sequence see A191065.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,1,-1},{5,7,10,11,14,15,17,19,20,21,22,28},80] (* Harvey P. Dale, Jan 12 2020 *)

Formula

From Robert Israel, Nov 30 2016: (Start)
a(n+11) = a(n)+23.
G.f.: (x^11+x^10+x^9+x^8+2*x^7+2*x^6+x^5+3*x^4+x^3+3*x^2+2*x+5)/(x^12-x^11-x+1). (End)