A278580 Numbers n such that Jacobi(n,23) = 1.
1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18, 24, 25, 26, 27, 29, 31, 32, 35, 36, 39, 41, 47, 48, 49, 50, 52, 54, 55, 58, 59, 62, 64, 70, 71, 72, 73, 75, 77, 78, 81, 82, 85, 87, 93, 94, 95, 96, 98, 100, 101, 104, 105, 108, 110, 116, 117, 118, 119, 121, 123, 124, 127, 128, 131, 133, 139, 140, 141, 142, 144, 146
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,1,-1},{1,2,3,4,6,8,9,12,13,16,18,24},90] (* Harvey P. Dale, Jun 25 2020 *)
-
PARI
Vec(x*(1+x+x^2+x^3+2*x^4+2*x^5+x^6+3*x^7+x^8+3*x^9+2*x^10+5*x^11) / ((1-x)^2*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10)) + O(x^100)) \\ Colin Barker, Nov 30 2016
Formula
From Colin Barker, Nov 30 2016: (Start)
a(n+11) = a(n) + 23.
a(n) = a(n-1) + a(n-11) - a(n-12) for n>12.
G.f.: x*(1 +x +x^2 +x^3 +2*x^4 +2*x^5 +x^6 +3*x^7 +x^8 +3*x^9 +2*x^10 +5*x^11) / ((1 -x)^2*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10))
(End)
Comments