A278602 Sum of the perimeters of all regions of the n-th section of a modular table of partitions.
0, 4, 8, 12, 24, 32, 60, 76, 128, 168, 256, 332, 496, 628, 896, 1152, 1580, 2008, 2716, 3416, 4528, 5688, 7388, 9228, 11872, 14708, 18684, 23088, 29004, 35632, 44440, 54288, 67168, 81756, 100384, 121656, 148552, 179192, 217556, 261544, 315836, 378232, 454748, 542584, 649500, 772532, 920912
Offset: 0
Keywords
Examples
For n = 1..6, consider the modular table of partitions for the first six positive integers as shown below in the fourth quadrant of the square grid (see Figure 1): |--------------|-----------------------------------------------------| | Modular table| Sections | | of partitions|-----------------------------------------------------| | for n=1..6 | 1 2 3 4 5 6 | 1--------------|-----------------------------------------------------| . _ _ _ _ _ _ _ _ _ _ _ _ . |_| | | | | | |_| _| | | | | | | | | | . |_ _| | | | | |_ _| _ _| | | | | | | | . |_ _ _| | | | |_ _ _| _ _ _| | | | | | . |_ _| | | | |_ _| | | | | | . |_ _ _ _| | | |_ _ _ _| _ _ _ _| | | | . |_ _ _| | | |_ _ _| | | | . |_ _ _ _ _| | |_ _ _ _ _| _ _ _ _ _| | . |_ _| | | |_ _| | | . |_ _ _ _| | |_ _ _ _| | . |_ _ _| | |_ _ _| | . |_ _ _ _ _ _| |_ _ _ _ _ _| . . Figure 1. Figure 2. . The table contains 11 regions, see Figure 1. The regions are distributed in 6 sections. The Figure 2 shows the sections separately. Then consider the following table which contains the diagram of every region separately: --------------------------------------------------------------------- | | | | | | | | Section | Region | Parts | Region | Peri- | a(n) | | | |(A220482)| diagram | meter | | --------------------------------------------------------------------- | | | | _ | | | | 1 | 1 | 1 | |_| | 4 | 4 | --------------------------------------------------------------------- | | | | _ | | | | | | 1 | _| | | | | | 2 | 2 | 2 | |_ _| | 8 | 8 | --------------------------------------------------------------------- | | | | _ | | | | | | 1 | | | | | | | | | 1 | _ _| | | | | | 3 | 3 | 3 | |_ _ _| | 12 | 12 | --------------------------------------------------------------------- | | | | _ _ | | | | | 4 | 2 | |_ _| | 6 | | | |---------|---------|----------------------------| | | | | | _ | | | | | | 1 | | | | | | | | | 1 | | | | | | | | | 1 | _| | | | | | | | 2 | _ _| | | | | | 4 | 5 | 4 | |_ _ _ _| | 18 | 24 | --------------------------------------------------------------------- | | | | _ _ _ | | | | | 6 | 3 | |_ _ _| | 8 | | | |---------|---------|--------------------|-------| | | | | | _ | | | | | | 1 | | | | | | | | | 1 | | | | | | | | | 1 | | | | | | | | | 1 | | | | | | | | | 1 | _| | | | | | | | 2 | _ _ _| | | | | | 5 | 7 | 5 | |_ _ _ _ _| | 24 | 32 | --------------------------------------------------------------------- | | | | _ _ | | | | | 8 | 2 | |_ _| | 6 | | | |---------|---------|--------------------|-------| | | | | | _ _ | | | | | | 2 | _ _| | | | | | | 9 | 4 | |_ _ _ _| | 12 | | 1 |---------|---------|--------------------|-------| | | | | | _ _ _ | | | | | 10 | 3 | |_ _ _| | 8 | | | |---------|---------|--------------------|-------| | | | | | _ | | | | | | 1 | | | | | | | | | 1 | | | | | | | | | 1 | | | | | | | | | 1 | | | | | | | | | 1 | | | | | | | | | 1 | | | | | | | | | 1 | _| | | | | | | | 2 | | | | | | | | | 2 | _| | | | | | | | 3 | _ _ _| | | | | | 6 | 11 | 6 | |_ _ _ _ _ _| | 34 | 60 | --------------------------------------------------------------------- . For n = 1..3, there is only one region in every section. The perimeters of the regions are 4, 8 and 12 respectively, so a(1) = 4, a(2) = 8, and a(3) = 12. For n = 4, the 4th section contains two regions with perimeters 6 and 18 respectively. The sum of the perimeters is 6 + 18 = 24, so a(4) = 24. For n = 5, the 5th section contains two regions with perimeters 8 and 24 respectively. The sum of the perimeters is 8 + 24 = 32, so a(5) = 32. For n = 6, the 6th section contains four regions with perimeters 6, 12, 8 and 34 respectively. The sum of the perimeters is 6 + 12 + 8 + 34 = 60, so a(6) = 60.
Comments