cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A299474 a(n) = 4*p(n), where p(n) is the number of partitions of n.

Original entry on oeis.org

4, 4, 8, 12, 20, 28, 44, 60, 88, 120, 168, 224, 308, 404, 540, 704, 924, 1188, 1540, 1960, 2508, 3168, 4008, 5020, 6300, 7832, 9744, 12040, 14872, 18260, 22416, 27368, 33396, 40572, 49240, 59532, 71908, 86548, 104060, 124740, 149352, 178332, 212696, 253044, 300700, 356536, 422232, 499016, 589092, 694100, 816904
Offset: 0

Views

Author

Omar E. Pol, Feb 10 2018

Keywords

Comments

For n >= 1, a(n) is also the number of edges in the diagram of partitions of n, in which A299475(n) is the number of vertices and A000041(n) is the number of regions (see example and Euler's formula).

Examples

			Construction of a modular table of partitions in which a(n) is the number of edges of the diagram after n-th stage (n = 1..6):
--------------------------------------------------------------------------------
n ........:   1     2       3         4           5             6     (stage)
a(n)......:   4     8      12        20          28            44     (edges)
A299475(n):   4     7      10        16          22            34     (vertices)
A000041(n):   1     2       3         5           7            11     (regions)
--------------------------------------------------------------------------------
r     p(n)
--------------------------------------------------------------------------------
.             _    _ _    _ _ _    _ _ _ _    _ _ _ _ _    _ _ _ _ _ _
1 .... 1 ....|_|  |_| |  |_| | |  |_| | | |  |_| | | | |  |_| | | | | |
2 .... 2 .........|_ _|  |_ _| |  |_ _| | |  |_ _| | | |  |_ _| | | | |
3 .... 3 ................|_ _ _|  |_ _ _| |  |_ _ _| | |  |_ _ _| | | |
4                                 |_ _|   |  |_ _|   | |  |_ _|   | | |
5 .... 5 .........................|_ _ _ _|  |_ _ _ _| |  |_ _ _ _| | |
6                                            |_ _ _|   |  |_ _ _|   | |
7 .... 7 ....................................|_ _ _ _ _|  |_ _ _ _ _| |
8                                                         |_ _|   |   |
9                                                         |_ _ _ _|   |
10                                                        |_ _ _|     |
11 .. 11 .................................................|_ _ _ _ _ _|
.
Apart from the axis x, the r-th horizontal line segment has length A141285(r), equaling the largest part of the r-th region of the diagram.
Apart from the axis y, the r-th vertical line segment has length A194446(r), equaling the number of parts in the r-th region of the diagram.
The total number of parts equals the sum of largest parts.
Note that every diagram contains all previous diagrams.
An infinite diagram is a table of all partitions of all positive integers.
		

Crossrefs

k times partition numbers: A000041 (k=1), A139582 (k=2), A299473 (k=3), this sequence (k=4).

Programs

  • GAP
    List([0..50],n->4*NrPartitions(n)); # Muniru A Asiru, Jul 10 2018
    
  • Maple
    with(combinat): seq(4*numbpart(n),n=0..50); # Muniru A Asiru, Jul 10 2018
  • Mathematica
    4*PartitionsP[Range[0,50]] (* Harvey P. Dale, Dec 05 2023 *)
  • PARI
    a(n) = 4*numbpart(n); \\ Michel Marcus, Jul 15 2018
    
  • Python
    from sympy.ntheory import npartitions
    def a(n): return 4*npartitions(n)
    print([a(n) for n in range(51)]) # Michael S. Branicky, Apr 04 2021

Formula

a(n) = 4*A000041(n) = 2*A139582(n).
a(n) = A000041(n) + A299475(n) - 1, n >= 1 (Euler's formula).
a(n) = A000041(n) + A299473(n). - Omar E. Pol, Aug 11 2018

A299475 a(n) is the number of vertices in the diagram of partitions of n (see example).

Original entry on oeis.org

1, 4, 7, 10, 16, 22, 34, 46, 67, 91, 127, 169, 232, 304, 406, 529, 694, 892, 1156, 1471, 1882, 2377, 3007, 3766, 4726, 5875, 7309, 9031, 11155, 13696, 16813, 20527, 25048, 30430, 36931, 44650, 53932, 64912, 78046, 93556, 112015, 133750, 159523, 189784, 225526, 267403, 316675, 374263, 441820, 520576, 612679
Offset: 0

Views

Author

Omar E. Pol, Feb 11 2018

Keywords

Comments

For n >= 1, A299474(n) is the number of edges and A000041(n) is the number of regions in the mentioned diagram (see example and Euler's formula).

Examples

			Construction of a modular table of partitions in which a(n) is the number of vertices of the diagram after n-th stage (n = 1..6):
--------------------------------------------------------------------------------
n ........:   1     2       3         4           5             6     (stage)
a(n)......:   4     7      10        16          22            34     (vertices)
A299474(n):   4     8      12        20          28            44     (edges)
A000041(n):   1     2       3         5           7            11     (regions)
--------------------------------------------------------------------------------
r     p(n)
--------------------------------------------------------------------------------
.             _    _ _    _ _ _    _ _ _ _    _ _ _ _ _    _ _ _ _ _ _
1 .... 1 ....|_|  |_| |  |_| | |  |_| | | |  |_| | | | |  |_| | | | | |
2 .... 2 .........|_ _|  |_ _| |  |_ _| | |  |_ _| | | |  |_ _| | | | |
3 .... 3 ................|_ _ _|  |_ _ _| |  |_ _ _| | |  |_ _ _| | | |
4                                 |_ _|   |  |_ _|   | |  |_ _|   | | |
5 .... 5 .........................|_ _ _ _|  |_ _ _ _| |  |_ _ _ _| | |
6                                            |_ _ _|   |  |_ _ _|   | |
7 .... 7 ....................................|_ _ _ _ _|  |_ _ _ _ _| |
8                                                         |_ _|   |   |
9                                                         |_ _ _ _|   |
10                                                        |_ _ _|     |
11 .. 11 .................................................|_ _ _ _ _ _|
.
Apart from the axis x, the r-th horizontal line segment has length A141285(r), equaling the largest part of the r-th region of the diagram.
Apart from the axis y, the r-th vertical line segment has length A194446(r), equaling the number of parts in the r-th region of the diagram.
The total number of parts equals the sum of largest parts.
Note that every diagram contains all previous diagrams.
An infinite diagram is a table of all partitions of all positive integers.
		

Crossrefs

Programs

  • PARI
    a(n) = if (n==0, 1, 1+3*numbpart(n)); \\ Michel Marcus, Jul 15 2018

Formula

a(0) = 1; a(n) = 1 + 3*A000041(n), n >= 1.
a(n) = A299474(n) - A000041(n) + 1, n >= 1 (Euler's formula).

A273140 Number of parts in the corner of size n X n of the modular table of partitions described in Comments.

Original entry on oeis.org

1, 3, 6, 11, 17, 25, 34, 46, 59, 74, 90, 109, 129, 151, 174, 201, 229, 259, 290, 323, 358, 394, 434, 475, 518, 562, 609, 657, 707, 758, 814, 871, 930, 990, 1052, 1116, 1181, 1249, 1318, 1389, 1462, 1536, 1615, 1695, 1777, 1860, 1946, 2033, 2122, 2212, 2305, 2400, 2496, 2594, 2694, 2795
Offset: 1

Views

Author

Omar E. Pol, May 16 2016

Keywords

Comments

Consider an infinite dissection of the fourth quadrant of the square grid in which, apart from the axes x and y, the k-th horizontal line segment has length A141285(n) and the n-th vertical line segment has length A194446(n). Both line segments shares the point (A141285(n),n). Note that in the infinite table there are no partitions because every row contains an infinite number of parts. On the other hand, taking only the first k sections from the table we have a representation of the partitions of k. For the definition of "region" see A206437. For the definition of "section" see A135010.

Examples

			For n = 4 the corner of size 4 X 4 of the modular table of partitions contains 11 parts as shown below, so a(4) = 11.
.
.   Row   _ _ _ _       Parts
.    1   |_| | | |        4
.    2   |_ _| | |        3
.    3   |_ _ _| |        2
.    4   |_ _|   |        2
.                       ----
.                  Total 11
.
For n = 20 the corner of size 20 X 20 of the modular table of partitions contains 323 parts as shown below, so a(20) = 323.
.
.   Row   _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _       Parts
.    1   |_| | | | | | | | | | | | | | | | | | | |        20
.    2   |_ _| | | | | | | | | | | | | | | | | | |        19
.    3   |_ _ _| | | | | | | | | | | | | | | | | |        18
.    4   |_ _|   | | | | | | | | | | | | | | | | |        18
.    5   |_ _ _ _| | | | | | | | | | | | | | | | |        17
.    6   |_ _ _|   | | | | | | | | | | | | | | | |        17
.    7   |_ _ _ _ _| | | | | | | | | | | | | | | |        16
.    8   |_ _|   |   | | | | | | | | | | | | | | |        17
.    9   |_ _ _ _|   | | | | | | | | | | | | | | |        16
.   10   |_ _ _|     | | | | | | | | | | | | | | |        16
.   11   |_ _ _ _ _ _| | | | | | | | | | | | | | |        15
.   12   |_ _ _|   |   | | | | | | | | | | | | | |        16
.   13   |_ _ _ _ _|   | | | | | | | | | | | | | |        15
.   14   |_ _ _ _|     | | | | | | | | | | | | | |        15
.   15   |_ _ _ _ _ _ _| | | | | | | | | | | | | |        14
.   16   |_ _|   |   |   | | | | | | | | | | | | |        16
.   17   |_ _ _ _|   |   | | | | | | | | | | | | |        15
.   18   |_ _ _|     |   | | | | | | | | | | | | |        15
.   19   |_ _ _ _ _ _|   | | | | | | | | | | | | |        14
.   20   |_ _ _ _ _|     | | | | | | | | | | | | |        14
.                                                       -----
.                                                  Total 323
.
		

Crossrefs

A299473 a(n) = 3*p(n), where p(n) is the number of partitions of n.

Original entry on oeis.org

3, 3, 6, 9, 15, 21, 33, 45, 66, 90, 126, 168, 231, 303, 405, 528, 693, 891, 1155, 1470, 1881, 2376, 3006, 3765, 4725, 5874, 7308, 9030, 11154, 13695, 16812, 20526, 25047, 30429, 36930, 44649, 53931, 64911, 78045, 93555, 112014, 133749, 159522, 189783, 225525, 267402, 316674, 374262, 441819, 520575, 612678
Offset: 0

Views

Author

Omar E. Pol, Feb 10 2018

Keywords

Comments

For n >= 1, a(n) is also the number of vertices in the minimalist diagram of partitions of n, in which A139582(n) is the number of line segments and A000041(n) is the number of open regions (see example).

Examples

			Construction of a minimalist version of a modular table of partitions in which a(n) is the number of vertices of the diagram after n-th stage (n = 1..6):
-----------------------------------------------------------------------------------
n.........:    1     2       3         4           5           6   (stage)
A000041(n):    1     2       3         5           7          11   (open regions)
A139582(n):    2     4       6        10          14          22   (line segments)
a(n)......:    3     6       9        15          21          33   (vertices)
-----------------------------------------------------------------------------------
r     p(n)
-----------------------------------------------------------------------------------
.
1 .... 1 .... _|   _| |   _| | |   _| | | |   _| | | | |   _| | | | | |
2 .... 2 ......... _ _|   _ _| |   _ _| | |   _ _| | | |   _ _| | | | |
3 .... 3 ................ _ _ _|   _ _ _| |   _ _ _| | |   _ _ _| | | |
4                                  _ _|   |   _ _|   | |   _ _|   | | |
5 .... 5 ......................... _ _ _ _|   _ _ _ _| |   _ _ _ _| | |
6                                             _ _ _|   |   _ _ _|   | |
7 .... 7 .................................... _ _ _ _ _|   _ _ _ _ _| |
8                                                          _ _|   |   |
9                                                          _ _ _ _|   |
10                                                         _ _ _|     |
11 .. 11 ................................................. _ _ _ _ _ _|
.
The r-th horizontal line segment has length A141285(r).
The r-th vertical line segment has length A194446(r).
An infinite diagram is a minimalist table of all partitions of all positive integers.
		

Crossrefs

k times partition numbers: A000041 (k=1), A139582 (k=2), this sequence (k=3), A299474 (k=4).

Formula

a(n) = 3*A000041(n) = A000041(n) + A139582(n).
a(n) = A299475(n) - 1, n >= 1.
Showing 1-4 of 4 results.