cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278614 Sum of terms in level n of TRIP - Stern sequence associated with permutation triple (e,12,12).

Original entry on oeis.org

3, 8, 22, 62, 176, 502, 1434, 4100, 11726, 33542, 95952, 274494, 785266, 2246484, 6426742, 18385646, 52597744, 150471910, 430470890, 1231493604
Offset: 0

Views

Author

Ilya Amburg, Nov 23 2016

Keywords

Crossrefs

Programs

  • Maple
    A278614T := proc(n)
        option remember;
        local an, nrecur ;
        if n = 1 then
            [1, 1, 1] ;
        else
            an := procname(floor(n/2)) ;
            if type(n, 'even') then
                # apply F0
                [op(3, an), op(2, an),op(1, an)+ op(3, an)] ;
            else
                # apply F1
                [op(2, an), op(1, an), op(1, an)+op(3, an)] ;
            end if;
        end if;
    end proc;
    A278614 := proc(n)
        local a, l;
        a := 0 ;
        for l from 2^n to 2^(n+1)-1 do
            L := A278614T(l) ;
            a := a+ L[1]+L[2]+L[3] ;
        end do:
        a ;
    end proc: # R. J. Mathar, Dec 02 2016
  • Mathematica
    A278614T[n_] := A278614T[n] = Module[{an}, If[n == 1, {1, 1, 1}, an = A271487T[Floor[n/2]]; If[EvenQ[n], {an[[3]], an[[2]], an[[1]] + an[[3]]}, {an[[2]], an[[1]], an[[1]] + an[[3]]}]]];
    a[n_] := a[n] = Module[{a = 0, l, L}, For[l = 2^n, l <= 2^(n + 1) - 1, l++, L = A278614T[l]; a = a + L[[1]] + L[[2]] + L[[3]]]; a];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 20 2017, after R. J. Mathar *)

Formula

Conjecture: G.f.: ( 3-x-5*x^2 ) / ( 1-3*x-x^2+4*x^3 ). - R. J. Mathar, Dec 02 2016

Extensions

More terms from R. J. Mathar, Dec 02 2016