A278614 Sum of terms in level n of TRIP - Stern sequence associated with permutation triple (e,12,12).
3, 8, 22, 62, 176, 502, 1434, 4100, 11726, 33542, 95952, 274494, 785266, 2246484, 6426742, 18385646, 52597744, 150471910, 430470890, 1231493604
Offset: 0
Links
- I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, M. Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, arXiv:1509.05239 [math.CO], 17 Sep 2015.
Programs
-
Maple
A278614T := proc(n) option remember; local an, nrecur ; if n = 1 then [1, 1, 1] ; else an := procname(floor(n/2)) ; if type(n, 'even') then # apply F0 [op(3, an), op(2, an),op(1, an)+ op(3, an)] ; else # apply F1 [op(2, an), op(1, an), op(1, an)+op(3, an)] ; end if; end if; end proc; A278614 := proc(n) local a, l; a := 0 ; for l from 2^n to 2^(n+1)-1 do L := A278614T(l) ; a := a+ L[1]+L[2]+L[3] ; end do: a ; end proc: # R. J. Mathar, Dec 02 2016
-
Mathematica
A278614T[n_] := A278614T[n] = Module[{an}, If[n == 1, {1, 1, 1}, an = A271487T[Floor[n/2]]; If[EvenQ[n], {an[[3]], an[[2]], an[[1]] + an[[3]]}, {an[[2]], an[[1]], an[[1]] + an[[3]]}]]]; a[n_] := a[n] = Module[{a = 0, l, L}, For[l = 2^n, l <= 2^(n + 1) - 1, l++, L = A278614T[l]; a = a + L[[1]] + L[[2]] + L[[3]]]; a]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 20 2017, after R. J. Mathar *)
Formula
Conjecture: G.f.: ( 3-x-5*x^2 ) / ( 1-3*x-x^2+4*x^3 ). - R. J. Mathar, Dec 02 2016
Extensions
More terms from R. J. Mathar, Dec 02 2016