cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278641 Number of pairs of orientable necklaces with n beads and up to 5 colors; i.e., turning the necklace over does not leave it unchanged. The turned-over necklace is not included in the count.

Original entry on oeis.org

0, 0, 0, 10, 45, 252, 1130, 5270, 23520, 106960, 483756, 2211650, 10149805, 46911060, 217868310, 1017057518, 4767797895, 22438419120, 105960938380, 501928967930, 2384171386941, 11353241261180, 54185968572450, 259150507387910, 1241763071712930, 5960463867187752, 28656077411358180, 137973711706163210
Offset: 0

Views

Author

Herbert Kociemba, Nov 24 2016

Keywords

Comments

Number of chiral bracelets of n beads using up to five different colors.

Crossrefs

Column 5 of A293496.
Cf. A059076 (2 colors), A278639 (3 colors), A278640 (4 colors).
a(n) = (A001869(n) - A056487(n+1)) / 2 = A032276(n) - A056487(n+1).
Equals A001869 - A032276.

Programs

  • Mathematica
    mx=40;f[x_,k_]:=(1-Sum[EulerPhi[n]*Log[1-k*x^n]/n,{n,1,mx}]-Sum[Binomial[k,i]*x^i,{i,0,2}]/(1-k*x^2))/2;CoefficientList[Series[f[x,5],{x,0,mx}],x]
    k=5; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) - (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)

Formula

G.f.: k=5, (1 - Sum_{n>=1} phi(n)*log(1 - k*x^n)/n - Sum_{i=0..2} Binomial[k,i]*x^i / ( 1-k*x^2) )/2.
For n>0, a(n) = -(k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/2n)* Sum_{d|n} phi(d)*k^(n/d), where k=5 is the maximum number of colors. - Robert A. Russell, Sep 24 2018