A278641 Number of pairs of orientable necklaces with n beads and up to 5 colors; i.e., turning the necklace over does not leave it unchanged. The turned-over necklace is not included in the count.
0, 0, 0, 10, 45, 252, 1130, 5270, 23520, 106960, 483756, 2211650, 10149805, 46911060, 217868310, 1017057518, 4767797895, 22438419120, 105960938380, 501928967930, 2384171386941, 11353241261180, 54185968572450, 259150507387910, 1241763071712930, 5960463867187752, 28656077411358180, 137973711706163210
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
mx=40;f[x_,k_]:=(1-Sum[EulerPhi[n]*Log[1-k*x^n]/n,{n,1,mx}]-Sum[Binomial[k,i]*x^i,{i,0,2}]/(1-k*x^2))/2;CoefficientList[Series[f[x,5],{x,0,mx}],x] k=5; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) - (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)
Formula
G.f.: k=5, (1 - Sum_{n>=1} phi(n)*log(1 - k*x^n)/n - Sum_{i=0..2} Binomial[k,i]*x^i / ( 1-k*x^2) )/2.
For n>0, a(n) = -(k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/2n)* Sum_{d|n} phi(d)*k^(n/d), where k=5 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
Comments