A278642 Number of pairs of orientable necklaces with n beads and up to 6 colors; i.e., turning the necklace over does not leave it unchanged. The turned-over necklace is not included in the count.
0, 0, 0, 20, 105, 672, 3535, 19350, 102795, 556010, 3010098, 16467450, 90619690, 502194420, 2798240265, 15671993560, 88156797855, 497837886000, 2821092554035, 16035752398770, 91403856697944, 522308167195260, 2991401733402075, 17168047238861070, 98716274117752900, 568605754068247644, 3280417827002225910, 18953525314104758810
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
mx = 40; f[x_, k_] := (1 - Sum[EulerPhi[n] * Log[1 - k * x^n]/n,{n, mx}] - Sum[Binomial[k, i] * x^i, {i, 0, 2}]/(1 - k * x^2))/2; CoefficientList[Series[f[x, 6], {x, 0, mx}], x] k = 6; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) - (k^Floor[(n + 1)/2] + k^Ceiling[(n + 1)/2])/4, {n, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)
Formula
Equals (A054625(n) - A056488(n)) / 2 = A054625(n) - A056341(n) = A056341(n) - A056488(n), for n >= 1.
G.f.: k = 6, (1 - Sum_{n >= 1} phi(n)*log(1 - k*x^n)/n - Sum_{i = 0..2} Binomial[k, i]*x^i / ( 1 - k*x^2) )/2.
For n > 0, a(n) = -(k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/2n)* Sum_{d|n} phi(d)*k^(n/d), where k = 6 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
Comments