A278680 Expansion of Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^4 in powers of x.
1, 4, 14, 40, 105, 251, 570, 1226, 2540, 5075, 9855, 18630, 34439, 62340, 110805, 193624, 333235, 565415, 947040, 1567130, 2564425, 4152535, 6658711, 10579380, 16663755, 26033200, 40357641, 62106290, 94912385, 144088840, 217368655, 325945320, 485950150, 720515475
Offset: 0
Keywords
Examples
G.f.: 1 + 4*x + 14*x^2 + 40*x^3 + 105*x^4 + 251*x^5 + 570*x^6 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
nmax = 30; CoefficientList[Series[Product[(1 - x^(5*k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
Formula
G.f.: Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^4.
a(n) ~ 19 * exp(Pi*sqrt(38*n/15)) / (120 * sqrt(10) * n^(3/2)). - Vaclav Kotesovec, Nov 10 2017