cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278684 Number of non-equivalent ways to place 5 non-attacking ferses on an n X n board.

Original entry on oeis.org

0, 0, 2, 99, 2102, 19987, 124676, 571418, 2122841, 6704061, 18711691, 47235845, 109938296, 238950999, 490309398, 957267228, 1790325363, 3224010105, 5615368229, 9493358359, 15627413290, 25112609019, 39484650296, 60859027054, 92114682749, 137111560949, 200972392655
Offset: 1

Views

Author

Heinrich Ludwig, Nov 26 2016

Keywords

Comments

A fers is a leaper [1, 1].
Rotations and reflections of placements are not counted. If they are to be counted, see A201246.

Examples

			There are 2 ways to place 5 non-attacking ferses on a 3 X 3 board, rotations and reflections being ignored:
   XXX   XXX
   ...   ...
   X.X   XX.
		

Crossrefs

Cf. A201246, A232567 (2 ferses), A278682 (3 ferses), A278683 (4 ferses), A278685 (6 ferses), A278686 (7 ferses), A278687, A278688.

Programs

  • Magma
    [0, 0, 2] cat [(n^10 - 50*n^8 + 80*n^7 + 955*n^6 - 2828*n^5 - 7090*n^4 + 36860*n^3 - 10856*n^2 - 133712*n + 161280 + ((1-(-1)^n)/2)*(52*n^5 - 145*n^4 - 580*n^3 + 2320*n^2 - 1152*n - 15))/960 : n in [4..30]]; // Wesley Ivan Hurt, Nov 27 2016
    
  • Maple
    A278684:=n->(n^10 - 50*n^8 + 80*n^7 + 955*n^6 - 2828*n^5 - 7090*n^4 + 36860*n^3 - 10856*n^2 - 133712*n + 161280 + ((1-(-1)^n)/2)*(52*n^5 - 145*n^4 - 580*n^3 + 2320*n^2 - 1152*n - 15))/960: 0, 0, 2, seq(A278684(n), n=4..30); # Wesley Ivan Hurt, Nov 27 2016
  • Mathematica
    Join[{0, 0, 2}, Table[(n^10 - 50*n^8 + 80*n^7 + 955*n^6 - 2828*n^5 - 7090*n^4 + 36860*n^3 - 10856*n^2 - 133712*n + 161280 + ((1-(-1)^n)/2)*(52*n^5 - 145*n^4 - 580*n^3 + 2320*n^2 - 1152*n - 15))/960, {n, 4, 30}]] (* Wesley Ivan Hurt, Nov 27 2016 *)
  • PARI
    concat(vector(2), Vec(x^3*(2 +89*x +1615*x^2 +9913*x^3 +35049*x^4 +66034*x^5 +78731*x^6 +45748*x^7 +9902*x^8 -5540*x^9 -1343*x^10 +1685*x^11 +409*x^12 -334*x^13 -83*x^14 +38*x^15 +6*x^16 -x^17) / ((1 -x)^11*(1 +x)^6) + O(x^40))) \\ Colin Barker, Dec 10 2016

Formula

a(n) = (n^10 - 50*n^8 + 80*n^7 + 955*n^6 - 2828*n^5 - 7090*n^4 + 36860*n^3 - 10856*n^2 - 133712*n + 161280 + ((1-(-1)^n)/2)*(52*n^5 - 145*n^4 - 580*n^3 + 2320*n^2 - 1152*n - 15))/960 for n >= 4.
a(n) = 5*a(n-1) - 4*a(n-2) - 20*a(n-3) + 40*a(n-4) + 16*a(n-5) - 100*a(n-6) + 44*a(n-7) + 110*a(n-8) - 110*a(n-9) - 44*a(n-10) + 100*a(n-11) - 16*a(n-12) - 40*a(n-13) + 20*a(n-14) + 4*a(n-15) - 5*a(n-16) + a(n-17) for n >= 21.
G.f.: x^3*(2 +89*x +1615*x^2 +9913*x^3 +35049*x^4 +66034*x^5 +78731*x^6 +45748*x^7 +9902*x^8 -5540*x^9 -1343*x^10 +1685*x^11 +409*x^12 -334*x^13 -83*x^14 +38*x^15 +6*x^16 -x^17) / ((1 -x)^11*(1 +x)^6). - Colin Barker, Dec 10 2016