A278713 Numerators of (n-1)*(n-3)/(6*(2*n-1)); equivalently, numerators of Dedekind sum s(2,2*n-1).
0, -1, 0, 1, 4, 5, 4, 7, 8, 21, 40, 33, 4, 143, 28, 65, 112, 17, 48, 323, 60, 133, 44, 161, 88, 575, 104, 45, 364, 261, 140, 899, 32, 341, 544, 385, 204, 259, 228, 481, 760, 533, 56, 1763, 308, 645, 1012, 141, 368, 2303, 400, 833, 260, 901, 468, 2915, 504, 209
Offset: 1
References
- Apostol, Tom, M., Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990.
- Ayoub, R., An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963, pp. 168, 191.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Dedekind Sum.
Programs
-
Magma
[Numerator((n-1)*(n-3)/(6*(2*n-1))): n in [1..60]]; // Vincenzo Librandi, Nov 21 2018
-
Mathematica
Table[Numerator[(n - 1) (n - 3) / (6 (2 n - 1))], {n, 60}] (* Vincenzo Librandi, Nov 21 2018 *)
-
PARI
a(n)=numerator((n-1)*(n-3)/(12*n-6)) \\ Charles R Greathouse IV, Nov 28 2016
Formula
a(n) = numerator((n-1)*(n-3)/(6*(2*n-1))).
a(n) = numerator(r(n)), with r(n) = s(2,2*n-1) where s(2,k) = Sum_{r=1..(k-1)} (r/k)*(2*r/k - floor(2*r/k)- 1/2), for odd k.
(n-1)*(n-3)/30 <= a(n) <= (n-1)*(n-3) for n > 2. - Charles R Greathouse IV, Nov 28 2016
Comments