A278715 Table T read by rows. T(k, h) gives the numerators of the Dedekind sums s(h, k) with gcd(h, k) = 1 or 0 otherwise.
0, 1, -1, 1, 0, -1, 1, 0, 0, -1, 5, 0, 0, 0, -5, 5, 1, -1, 1, -1, -5, 7, 0, 1, 0, -1, 0, -7, 14, 4, 0, -4, 4, 0, -4, -14, 3, 0, 0, 0, 0, 0, 0, 0, -3, 15, 5, 3, 3, -5, 5, -3, -3, -5, -15, 55, 0, 0, 0, -1, 0, 1, 0, 0, 0, -55, 11, 4, 1, -1, 0, -4, 4, 0, 1, -1, -4, -11, 13, 0, 3, 0, 3, 0, 0, 0, -3, 0, -3, 0, -13, 91, 7, 0, 19, 0, 0, -7, 7, 0, 0, -19, 0, -7, -91
Offset: 2
Examples
The triangle T(k,h) begins (if gcd(k,h) is not 1 we use o instead of 0): k\h 1 2 3 4 5 6 7 8 9 10 11 12 2: 0 3: 1 -1 4: 1 o -1 5: 1 0 0 -1 6: 5 o o o -5 7: 5 1 -1 1 -1 -5 8: 7 o 1 o -1 o -7 9: 14 4 o -4 4 o -4 -14 10: 3 o 0 o o o 0 o -3 11: 15 5 3 3 -5 5 -3 -3 -5 -15 12: 55 o o o -1 o 1 o o o -55 13: 11 4 1 -1 0 -4 4 0 1 -1 -4 -11 ... n = 14: 13 o 3 o 3 o o o -3 o -3 o -13, n = 15: 91 7 0 19 0 0 -7 7 0 0 -19 0 -7 -91. ... --------------------------------------------- The rational triangle s(h,k) begins (here o is used if gcd(h,k) is not 1): k\h 1 2 3 4 5 6 7 2: 0 3: 1/18 -1/18 4: 1/8 o -1/8 5: 1/5 0 0 -1/5 6: 5/18 o o o -5/18 7: 5/14 1/14 -1/14 1/14 -1/14 -5/14 8: 7/16 o 1/16 o -1/16 o -7/16 ... n = 9: 14/27 4/27 o -4/27 4/27 o -4/27 -14/27, n = 10: 3/5 o 0 o o o 0 o -3/5, n = 11: 15/22 5/22 3/22 3/22 -5/22 5/22 -3/22 -3/22 -5/22 -15/22, n = 12: 55/72 o o o -1/72 o 1/72 o o o -55/72, n = 13: 11/13 4/13 1/13 -1/13 0 -4/13 4/13 0 1/13 -1/13 -4/13 -11/13, n = 14: 13/14 o 3/14 o 3/14 o o o -3/14 o -3/14 o -13/14, n = 15: 1/90 7/18 o 19/90 o o -7/18 7/18 o o -19/90 o -7/18 -91/90. ... --------------------------------------------
References
- Apostol, Tom, M., Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990.
- Ayoub, R., An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963.
Links
- G. C. Greubel, Rows n=2..100 of triangle, flattened
- Eric Weisstein's World of Mathematics, Dedekind Sum.
Programs
-
Magma
[[GCD(n,k) eq 1 select Numerator((&+[(j/n)*(k*j/n - Floor(k*j/n) - 1/2): j in [1..(n-1)]])) else 0: k in [1..(n-1)]]: n in [2..15]]; // G. C. Greubel, Nov 22 2018
-
Mathematica
T[n_, k_]:= If[GCD[n, k] == 1, Sum[(j/n)*(k*j/n - Floor[k*j/n] - 1/2), {j, 1, n - 1}], 0]; Numerator[Table[T[n, k], {n,2,15}, {k,1,n-1}]] //Flatten (* G. C. Greubel, Nov 22 2018 *)
-
PARI
{T(n,k) = if(gcd(n,k)==1, sum(j=1,n-1, (j/n)*(k*j/n - floor(k*j/n) - 1/2)), 0)}; for(n=2,15, for(k=1,n-1, print1(numerator(T(n,k)), ", "))) \\ G. C. Greubel, Nov 22 2018
-
Sage
def T(n,k): if gcd(n,k)==1: return numerator(sum((j/n)*(k*j/n - floor(k*j/n) - 1/2) for j in (1..(n-1)))) elif gcd(n,k)!=1: return 0 else: 0 [[T(n,k) for k in (1..n-1)] for n in (2..15)] # G. C. Greubel, Nov 22 2018
Formula
T(k ,h) = numerator(s(h,k)) with the Dedekind sums s(h,k) given in a comment above and gcd(h,k) = 1. k >=2, h = 1, 2, ..., k-1. If gcd(h,k) is not 1 then T(k,h) is put to 0 (in the example o is used). Note that T(k,h) can vanish also for gcd(h,k) = 1.
Comments