cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278766 Engel expansion of plastic constant (real root of x^3 - x - 1).

Original entry on oeis.org

1, 4, 4, 6, 6, 27, 74, 86, 372, 853, 947, 1475, 3686, 9084, 19174, 30737, 1530833, 2401466, 2521253, 3649563, 3802245, 9320024, 1092256819, 2114664794, 2878948610, 8842525055, 13769551820, 26996892389, 215947176106, 269439735691, 13694290818678, 18312336654245, 19649485782723, 63266709043539
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2016

Keywords

Examples

			(1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3) = 1.324717957244... = 1/1 + 1/(1*4) + 1/(1*4*4) + 1/(1*4*4*6) + 1/(1*4*4*6*6) + 1/(1*4*4*6*6*27) + ...
		

Crossrefs

Cf. A006784 (for definition of Engel expansion).

Programs

  • Mathematica
    EngelExp[A_, n_]:=Join[Array[1&, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]], Expand[ #[[1]]#[[2]]-1]}&, {Ceiling[1/(A-Floor[A])], A-Floor[A]}, n-1]]; EngelExp[N[(1/2 + Sqrt[23/108])^(1/3) + (1/2 - Sqrt[23/108])^(1/3), 7! ], 40]