cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A278478 a(n) is the 2-adic valuation of A000041(n).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 3, 0, 0, 0, 4, 0, 0, 0, 1, 0, 3, 1, 0, 0, 1, 2, 1, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 1, 2, 2, 0, 0, 2, 0, 1, 1, 6, 0, 0, 0, 5, 0, 0, 0, 2, 3, 0, 0, 2, 1, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 11, 1, 3, 0, 2, 1, 0, 1, 0, 0, 4, 0, 2, 7, 1, 0, 2, 2, 0, 0, 3, 2, 0
Offset: 0

Views

Author

Joerg Arndt, Nov 23 2016

Keywords

Comments

Write A000041(n) = 2^k * s where s is odd, then a(n) = k.

Crossrefs

Cf. A052002, A237280, A278779, A278780, A278781, A278782, A278783, A278784 (positions of terms 0, 1, 2, ..., 7 in this sequence).
Cf. also A278241.

Programs

  • Maple
    a:= n-> padic[ordp](combinat[numbpart](n), 2):
    seq(a(n), n=0..120);  # Alois P. Heinz, Nov 23 2016
  • Mathematica
    a[n_] := IntegerExponent[PartitionsP[n], 2]; Array[a, 100, 0] (* Amiram Eldar, May 25 2024 *)
  • PARI
    { my( x='x+O('x^100), v=Vec(1/eta(x)) ); vector(#v,n,valuation(v[n],2)) }

Formula

From Amiram Eldar, May 25 2024: (Start)
a(n) = A007814(A000041(n)).
a(n) = log_2(A069935(n)). (End)

A278779 Numbers m such that A000041(m) is of the form 2^2 * k for odd k.

Original entry on oeis.org

26, 30, 55, 58, 59, 62, 74, 78, 80, 84, 100, 108, 112, 113, 117, 124, 126, 135, 153, 187, 191, 200, 205, 258, 265, 280, 291, 310, 317, 323, 336, 337, 342, 344, 351, 352, 353, 358, 359, 365, 374, 380, 384, 404, 409, 416, 444, 445, 458, 481, 485, 492, 501, 503
Offset: 1

Views

Author

Colin Barker, Nov 28 2016

Keywords

Comments

Numbers m such that A278478(m) = 2.
Also numbers m such that A000041(m) has twice as many even divisors as odd divisors.

Crossrefs

Positions of 2's in A278478.

Programs

  • Mathematica
    Select[Range[3000], IntegerExponent[PartitionsP[#], 2] == 2 &] (* Amiram Eldar, May 25 2024 *)
  • PARI
    isok(n) = valuation(numbpart(n), 2)==2;
    select(n->isok(n), vector(1000, n, n))

Formula

A000041(a(n)) = A278196(n).

A278780 Numbers m such that A000041(m) is of the form 2^3 * k for odd k.

Original entry on oeis.org

11, 21, 75, 94, 98, 116, 120, 125, 128, 130, 133, 137, 141, 142, 180, 206, 231, 236, 243, 248, 255, 268, 292, 297, 303, 305, 322, 334, 340, 350, 364, 386, 397, 413, 415, 469, 471, 487, 494, 515, 550, 554, 605, 606, 609, 628, 631, 662, 676, 692, 699, 744, 745
Offset: 1

Views

Author

Colin Barker, Nov 28 2016

Keywords

Comments

Numbers m such that A278478(m) = 3.
Also numbers m such that A000041(m) has three times as many even divisors as odd divisors.

Crossrefs

Positions of 3's in A278478.

Programs

  • Mathematica
    Select[Range[750], IntegerExponent[PartitionsP[#], 2] == 3 &] (* Amiram Eldar, May 25 2024 *)
  • PARI
    isok(n) = valuation(numbpart(n),2)==3;
    select(n->isok(n), vector(1000, n, n))

Formula

A000041(a(n)) = A278197(n).

A278781 Numbers m such that A000041(m) is of the form 2^4 * k for odd k.

Original entry on oeis.org

15, 106, 122, 131, 136, 253, 295, 327, 339, 383, 412, 449, 465, 517, 520, 551, 580, 581, 599, 602, 632, 648, 669, 677, 776, 806, 815, 838, 904, 927, 1071, 1137, 1166, 1174, 1199, 1263, 1275, 1298, 1325, 1375, 1399, 1404, 1425, 1554, 1564, 1641, 1684, 1688
Offset: 1

Views

Author

Colin Barker, Nov 28 2016

Keywords

Comments

Numbers m such that A278478(m) = 4.
Also numbers m such that A000041(m) has four times as many even divisors as odd divisors.

Crossrefs

Positions of 4's in A278478.

Programs

  • Mathematica
    Select[Range[1700], IntegerExponent[PartitionsP[#], 2] == 4 &] (* Amiram Eldar, May 25 2024 *)
  • PARI
    isok(n) = valuation(numbpart(n), 2)==4;
    select(n->isok(n), vector(2000, n, n))

Formula

A000041(a(n)) = A278198(n).

A278782 Numbers m such that A000041(m) is of the form 2^5 * k for odd k.

Original entry on oeis.org

70, 179, 262, 278, 419, 561, 682, 698, 767, 879, 1147, 1238, 1273, 1317, 1362, 1364, 1378, 1450, 1478, 1499, 1509, 1548, 1590, 1638, 1668, 1711, 1752, 1781, 1838, 1949, 2170, 2187, 2300, 2317, 2334, 2382, 2408, 2447, 2463, 2499, 2551, 2669, 2695, 2788, 2926
Offset: 1

Views

Author

Colin Barker, Nov 28 2016

Keywords

Comments

Numbers m such that A278478(m) = 5.
Also numbers m such that A000041(m) has five times as many even divisors as odd divisors.

Crossrefs

Positions of 5's in A278478.

Programs

  • Mathematica
    Select[Range[500], IntegerExponent[PartitionsP[#], 2] == 5 &] (* Amiram Eldar, May 25 2024 *)
  • PARI
    isok(n) = valuation(numbpart(n), 2)==5;
    select(n->isok(n), vector(3000, n, n))

Formula

A000041(a(n)) = A278199(n).

A278783 Numbers m such that A000041(m) is of the form 2^6 * k for odd k.

Original entry on oeis.org

66, 149, 298, 435, 450, 518, 615, 703, 751, 764, 765, 855, 982, 1389, 1398, 1411, 1555, 1896, 2113, 2124, 2286, 2400, 2575, 2618, 2816, 2890, 2989, 3032, 3113, 3202, 3351, 3430, 3454, 3485, 3509, 3562, 3652, 3786, 3994, 4061, 4202, 4690, 5042, 5055, 5067
Offset: 1

Views

Author

Colin Barker, Nov 28 2016

Keywords

Comments

Also numbers m such that A000041(m) has six times as many even divisors as odd divisors.

Crossrefs

Positions of 6's in A278478.

Programs

  • Mathematica
    Select[Range[5100], IntegerExponent[PartitionsP[#], 2] == 6 &] (* Amiram Eldar, May 25 2024 *)
  • PARI
    isok(n) = valuation(numbpart(n), 2)==6;
    select(n->isok(n), vector(6000, n, n))

Formula

A000041(a(n)) = A278200(n).
Showing 1-6 of 6 results.