cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278815 Number of tilings of a 2 X n grid with monomers, dimers, and trimers.

Original entry on oeis.org

1, 2, 7, 29, 109, 416, 1596, 6105, 23362, 89415, 342193, 1309593, 5011920, 19180976, 73406985, 280933906, 1075154535, 4114694797, 15747237101, 60265824784, 230641706484, 882682631025, 3378090801226, 12928199853783, 49477163668857, 189352713633433
Offset: 0

Views

Author

Kathryn Haymaker, Nov 28 2016

Keywords

Comments

The first three terms are the same as A030186 because there are only monomers and dimers in boards with n<3.

Crossrefs

Programs

  • GAP
    a:=[1,2,7,29,109,416];; for n in [7..30] do a[n]:=3*a[n-1]+2*a[n-2] +5*a[n-3]-2*a[n-4]-a[n-6]; od; a; # G. C. Greubel, Oct 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+2*x^4+x^6) )); // G. C. Greubel, Oct 28 2019
    
  • Maple
    seq(coeff(series((1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+2*x^4+x^6), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 28 2019
  • Mathematica
    LinearRecurrence[{3,2,5,-2,0,-1}, {1,2,7,29,109,416}, 30] (* G. C. Greubel, Oct 28 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+ 2*x^4 +x^6)) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    def A278815_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+2*x^4+x^6) ).list()
    A278815_list(30) # G. C. Greubel, Oct 28 2019
    

Formula

a(n) = 3*a(n-1) + 2*a(n-2) + 5*a(n-3) - 2*a(n-4) - a(n-6).
G.f.: (1 - x - x^2 - x^3)/(1 - 3*x - 2*x^2 - 5*x^3 + 2*x^4 + x^6).