cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A278839 a(n) = det M_n where M_n is the n X n matrix m(i,j) = A000009(i+j).

Original entry on oeis.org

1, 1, -2, -1, 1, -1, 0, 1, 2, 1, -1, -1, -1, 3, -3, -7, -2, 3, -1, 0, 1, 1, -2, 2, 3, -2, 0, 0, -2, -3, -1, 0, 9, -5, -4, 0, 1, -1, -3, 1, 4, 3, 3, -7, -3, 3, 5, -48, 75, 143, 194, -272, 62, -31, -65, 46, 22, 3, -10, 2, 15, -15, -13, -2, 11, -1, -35, -26, 108
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 29 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Det[Table[PartitionsQ[i+j], {i, n}, {j, n}]], {n, 1, 100}]}]

A278840 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = A000041(i+j).

Original entry on oeis.org

1, 2, 19, 642, 58884, 13569779, 6931351962, 7532494931779, 16299546505518855, 67814300022651169814, 520884812091898994319805, 7206655416715261673779120809, 174009567319884878178189603283634, 7196671016523025599652036668556922867
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 29 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Permanent[Table[PartitionsP[i+j], {i, 1, n}, {j, 1, n}]], {n, 1, 14}]}]
Showing 1-2 of 2 results.