cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A278838 a(n) = det M_n where M_n is the n X n matrix m(i,j) = A000041(i+j).

Original entry on oeis.org

1, 2, 1, -2, 2, 3, 0, -3, -1, 4, -3, -3, 2, -1, -12, 12, 11, 6, -5, 0, 5, -4, -9, -11, 1, 4, -20, -20, -4, 9, -18, -27, 8, 52, -73, 83, 245, 88, -60, -217, -157, 74, -30, -99, 57, 74, -29, -36, 101, 320, -205, -206, 125, -109, -27, 139, -203, -644, -629, 723
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 29 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Det[Table[PartitionsP[i+j], {i, n}, {j, n}]], {n, 1, 100}]}]

A278841 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = A000009(i+j).

Original entry on oeis.org

1, 1, 6, 65, 1737, 91359, 8755730, 1465091787, 420070484342, 194857695312573, 142349343815684947, 161388097061567486595, 276760372468557882285737, 707850058213409589011565269, 2654427644322345709705054800083
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 29 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Permanent[Table[PartitionsQ[i+j], {i, 1, n}, {j, 1, n}]], {n, 1, 14}]}]
Showing 1-2 of 2 results.