A278869 Sophie Germain primes p such that p+6 and p-6 are primes.
11, 23, 53, 173, 233, 593, 653, 1103, 1223, 2693, 2903, 2963, 4793, 5303, 6263, 6323, 7823, 9473, 10253, 11783, 12653, 13463, 15803, 20753, 25673, 27743, 27773, 29873, 31253, 33623, 38183, 38453, 39233, 40283, 41603, 44273, 44543, 54443, 54773, 59393, 60083, 62213
Offset: 1
Keywords
Examples
11 is in the list because: 2*11 + 1 = 23 (prime), hence 11 is Sophie Germain prime; also, 11 - 6 = 5 and 11 + 6 = 17 are both prime. 23 is in the list because: 2*23 + 1 = 47 (prime), hence 23 is Sophie Germain prime; also, 23 - 6 = 17 and 23 + 6 = 29 are both prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..9180
Programs
-
Mathematica
Select[Prime[Range[20000]], PrimeQ[2 # + 1] && PrimeQ[# + 6] && PrimeQ[# - 6] &]
-
PARI
forprime(p=1,10000, if(isprime(2*p+1) && isprime(p+6) && isprime(p-6), print1(p, ", ")))
Comments