A278874 Number of tilings of a 2 X n rectangle using pentominoes of any shape and monominoes.
1, 1, 1, 7, 25, 50, 155, 508, 1343, 3800, 11438, 32525, 92333, 268766, 774302, 2216976, 6392865, 18425916, 52958070, 152425812, 438973764, 1263109849, 3634965137, 10463959311, 30116734921, 86675829307, 249478723992, 718056248229, 2066658063664, 5948257601097
Offset: 0
Examples
a(3) = 7: ._____. ._____. ._____. ._____. ._____. ._____. ._____. |_|_|_| | |_| | | ._. | | ._| |_. | | |_| |_| | |_|_|_| |_____| |_|_|_| |___|_| |_|___| |_____| |_____| .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Pentomino
Crossrefs
Column k=2 of A278657.
Formula
G.f.: -(x^10 +x^8 -x^6 -6*x^5 -x^4 -5*x^3 +1) / (x^15 +x^13 -2*x^11 -11*x^10 -2*x^9 -10*x^8 +x^7 +9*x^6 +12*x^5 +8*x^4 +11*x^3 +x -1).