cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278875 Number of tilings of a 3 X n rectangle using pentominoes of any shape and monominoes.

Original entry on oeis.org

1, 1, 7, 50, 311, 1954, 11914, 76003, 467221, 2943211, 18261840, 114360149, 712196192, 4449548684, 27749537725, 173227638835, 1080825788517, 6745415139188, 42092502492537, 262680587755837, 1639226363457986, 10229514197548963, 63836523795617745
Offset: 0

Views

Author

Alois P. Heinz, Nov 29 2016

Keywords

Examples

			a(2) = 7:
.___.  .___.  .___.  .___.  .___.  .___.  .___.
|_|_|  |   |  |   |  | |_|  |_| |  | ._|  |_. |
|_|_|  | ._|  |_. |  |   |  |   |  | |_|  |_| |
|_|_|  |_|_|  |_|_|  |___|  |___|  |___|  |___| .
		

Crossrefs

Column k=3 of A278657.

Formula

G.f.: -(x^70 +9*x^66 -58*x^65 +2*x^64 +33*x^62 -442*x^61 +1350*x^60 +177*x^59 +x^58 -1800*x^57 +7590*x^56 -14372*x^55 -5301*x^54 -4274*x^53 +27565*x^52 -57859*x^51 +81976*x^50 +25142*x^49 +52927*x^48 -178142*x^47 +267283*x^46 -286938*x^45 +18226*x^44 -271940*x^43 +645655*x^42 -741357*x^41 +769892*x^40 -399635*x^39 +731247*x^38 -1389200*x^37 +1406759*x^36 -1517890*x^35 +1113060*x^34 -1250164*x^33 +1807581*x^32 -1790865*x^31 +1917897*x^30 -1559114*x^29 +1282018*x^28 -1412376*x^27 +1442106*x^26 -1364028*x^25 +1161216*x^24 -797934*x^23 +646269*x^22 -590362*x^21 +518438*x^20 -428452*x^19 +276264*x^18 -167608*x^17 +99537*x^16 -80445*x^15 +63323*x^14 -44329*x^13 +18699*x^12 -9385*x^11 -862*x^10 -2736*x^9 -120*x^8 -534*x^7 -609*x^6 -199*x^5 -37*x^4 -13*x^3 -16*x^2 +1)
/ (x^75 +10*x^71 -67*x^70 +21*x^67 -575*x^66 +1781*x^65 +497*x^64 -87*x^63 -1909*x^62 +11113*x^61 -20753*x^60 -13155*x^59 -6937*x^58 +36701*x^57 -96686*x^56 +136888*x^55 +78888*x^54 +85389*x^53 -331892*x^52 +555027*x^51 -523802*x^50 -79591*x^49 -653455*x^48 +1705482*x^47 -1806940*x^46 +1752446*x^45 -1137530*x^44 +2652875*x^43 -4859649*x^42 +4471399*x^41 -5140040*x^40 +4864686*x^39 -6183059*x^38 +9006019*x^37 -8490050*x^36 +9607056*x^35 -9441593*x^34 +8984384*x^33 -10781348*x^32 +10676975*x^31 -10736664*x^30 +10043865*x^29 -7885992*x^28 +8169411*x^27 -7730756*x^26 +6657930*x^25 -5913652*x^24 +4235643*x^23 -3306372*x^22 +2709439*x^21 -2366644*x^20 +1645722*x^19 -1148473*x^18 +713958*x^17 -384641*x^16 +318569*x^15 -200025*x^14 +134362*x^13 -53508*x^12 +39041*x^11 -2080*x^10 +6477*x^9 +903*x^8 +1940*x^7 +863*x^6 +394*x^5 +110*x^4 +34*x^3 +22*x^2 +x -1).