A278881
Triangle where g.f. C = C(x,m) and related series S = S(x,m) and D = D(x,m) satisfy S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C, as read by rows of coefficients T(n,k) of x^(2*n)*m^k in C(x,m) for n>=0, k=0..n.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 8, 3, 0, 1, 20, 30, 4, 0, 1, 40, 147, 80, 5, 0, 1, 70, 504, 672, 175, 6, 0, 1, 112, 1386, 3600, 2310, 336, 7, 0, 1, 168, 3276, 14520, 18150, 6552, 588, 8, 0, 1, 240, 6930, 48048, 102245, 72072, 16170, 960, 9, 0, 1, 330, 13464, 137280, 455455, 546546, 240240, 35904, 1485, 10, 0, 1, 440, 24453, 350064, 1701700, 3179904, 2382380, 700128, 73359, 2200, 11, 0, 1, 572, 42042, 815100, 5542680, 15148224, 17672928, 8868288, 1833975, 140140, 3146, 12, 0
Offset: 0
This triangle of coefficients of x^(2*n)*m^k in C(x,m) for n>=0, k=0..n, begins:
1;
1, 0;
1, 2, 0;
1, 8, 3, 0;
1, 20, 30, 4, 0;
1, 40, 147, 80, 5, 0;
1, 70, 504, 672, 175, 6, 0;
1, 112, 1386, 3600, 2310, 336, 7, 0;
1, 168, 3276, 14520, 18150, 6552, 588, 8, 0;
1, 240, 6930, 48048, 102245, 72072, 16170, 960, 9, 0;
1, 330, 13464, 137280, 455455, 546546, 240240, 35904, 1485, 10, 0;
1, 440, 24453, 350064, 1701700, 3179904, 2382380, 700128, 73359, 2200, 11, 0;
1, 572, 42042, 815100, 5542680, 15148224, 17672928, 8868288, 1833975, 140140, 3146, 12, 0; ...
Generating function:
C(x,m) = 1 + x^2 + (1 + 2*m)*x^4 + (1 + 8*m + 3*m^2)*x^6 +
(1 + 20*m + 30*m^2 + 4*m^3)*x^8 +
(1 + 40*m + 147*m^2 + 80*m^3 + 5*m^4)*x^10 +
(1 + 70*m + 504*m^2 + 672*m^3 + 175*m^4 + 6*m^5)*x^12 +
(1 + 112*m + 1386*m^2 + 3600*m^3 + 2310*m^4 + 336*m^5 + 7*m^6)*x^14 +
(1 + 168*m + 3276*m^2 + 14520*m^3 + 18150*m^4 + 6552*m^5 + 588*m^6 + 8*m^7)*x^16 +...
where g.f. C = C(x,m) and related series S = S(x,m) and D = D(x,m) satisfy
S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C,
such that
C = C^2 - S^2,
D = D^2 - m*S^2.
The square of the g.f. begins:
C(x,m)^2 = 1 + 2*x^2 + (4*m + 3)*x^4 + (6*m^2 + 20*m + 4)*x^6 +
(8*m^3 + 70*m^2 + 60*m + 5)*x^8 +
(10*m^4 + 180*m^3 + 392*m^2 + 140*m + 6)*x^10 +
(12*m^5 + 385*m^4 + 1680*m^3 + 1512*m^2 + 280*m + 7)*x^12 +
(14*m^6 + 728*m^5 + 5544*m^4 + 9900*m^3 + 4620*m^2 + 504*m + 8)*x^14 +
(16*m^7 + 1260*m^6 + 15288*m^5 + 47190*m^4 + 43560*m^3 + 12012*m^2 + 840*m + 9)*x^16 +
(18*m^8 + 2040*m^7 + 36960*m^6 + 180180*m^5 + 286286*m^4 + 156156*m^3 + 27720*m^2 + 1320*m + 10)*x^18 +...
- Paul D. Hanna, Table of n, a(n) for n = 0..1080 for rows 0..45 of the flattened form of this triangle.
- Thomas Einolf, Robert Muth, and Jeffrey Wilkinson, Injectively k-colored rooted forests, arXiv:2107.13417 [math.CO], 2021.
- Tad White, Quota Trees, arXiv:2401.01462 [math.CO], 2024. See p. 20.
-
{T(n,k) = my(S=x,C=1,D=1); for(i=0,2*n, S = x*C*D + O(x^(2*n+2)); C = 1 + x*S*D; D = 1 + m*x*S*C;); polcoeff(polcoeff(C,2*n,x),k,m)}
for(n=0,15, for(k=0,n, print1(T(n,k),", "));print(""))
-
/* Explicit formula for T(n, k) */
{T(n,k) = if(k==0,1, if(n==k,0, (n+k)!*(2*n-k-1)!/(k!*(n-k)!*(2*k+1)!*(2*n-2*k-1)!) ))}
for(n=0, 15, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Dec 11 2016
A278882
Triangle where g.f. D = D(x,m) and related series S = S(x,m) and C = C(x,m) satisfy S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C, as read by rows of coefficients T(n,k) of x^(2*n)*m^k in C(x,m) for n>=1, k=0..n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 8, 1, 0, 4, 30, 20, 1, 0, 5, 80, 147, 40, 1, 0, 6, 175, 672, 504, 70, 1, 0, 7, 336, 2310, 3600, 1386, 112, 1, 0, 8, 588, 6552, 18150, 14520, 3276, 168, 1, 0, 9, 960, 16170, 72072, 102245, 48048, 6930, 240, 1, 0, 10, 1485, 35904, 240240, 546546, 455455, 137280, 13464, 330, 1, 0, 11, 2200, 73359, 700128, 2382380, 3179904, 1701700, 350064, 24453, 440, 1, 0, 12, 3146, 140140, 1833975, 8868288, 17672928, 15148224, 5542680, 815100, 42042, 572, 1
Offset: 0
This triangle of coefficients of x^(2*n)*m^k in D(x,m) for n>=0, k=0..n, begins:
1;
0, 1;
0, 2, 1;
0, 3, 8, 1;
0, 4, 30, 20, 1;
0, 5, 80, 147, 40, 1;
0, 6, 175, 672, 504, 70, 1;
0, 7, 336, 2310, 3600, 1386, 112, 1;
0, 8, 588, 6552, 18150, 14520, 3276, 168, 1;
0, 9, 960, 16170, 72072, 102245, 48048, 6930, 240, 1;
0, 10, 1485, 35904, 240240, 546546, 455455, 137280, 13464, 330, 1;
0, 11, 2200, 73359, 700128, 2382380, 3179904, 1701700, 350064, 24453, 440, 1;
0, 12, 3146, 140140, 1833975, 8868288, 17672928, 15148224, 5542680, 815100, 42042, 572, 1; ...
Generating function:
D(x,m) = 1 + m*x^2 + (2*m + m^2)*x^4 + (3*m + 8*m^2 + m^3)*x^6 +
(4*m + 30*m^2 + 20*m^3 + m^4)*x^8 +
(5*m + 80*m^2 + 147*m^3 + 40*m^4 + m^5)*x^10 +
(6*m + 175*m^2 + 672*m^3 + 504*m^4 + 70*m^5 + m^6)*x^12 +
(7*m + 336*m^2 + 2310*m^3 + 3600*m^4 + 1386*m^5 + 112*m^6 + m^7)*x^14 +
(8*m + 588*m^2 + 6552*m^3 + 18150*m^4 + 14520*m^5 + 3276*m^6 + 168*m^7 + m^8)*x^16 +...
where g.f. D = D(x,m) and related series S = S(x,m) and C = C(x,m) satisfy
S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C,
such that
C = C^2 - S^2,
D = D^2 - m*S^2.
The square of the g.f. begins:
D(x,m)^2 = 1 + 2*m*x^2 + (3*m^2 + 4*m)*x^4 +
(4*m^3 + 20*m^2 + 6*m)*x^6 +
(5*m^4 + 60*m^3 + 70*m^2 + 8*m)*x^8 +
(6*m^5 + 140*m^4 + 392*m^3 + 180*m^2 + 10*m)*x^10 +
(7*m^6 + 280*m^5 + 1512*m^4 + 1680*m^3 + 385*m^2 + 12*m)*x^12 +
(8*m^7 + 504*m^6 + 4620*m^5 + 9900*m^4 + 5544*m^3 + 728*m^2 + 14*m)*x^14 +
(9*m^8 + 840*m^7 + 12012*m^6 + 43560*m^5 + 47190*m^4 + 15288*m^3 + 1260*m^2 + 16*m)*x^16 +
(10*m^9 + 1320*m^8 + 27720*m^7 + 156156*m^6 + 286286*m^5 + 180180*m^4 + 36960*m^3 + 2040*m^2 + 18*m)*x^18 +...
-
{T(n,k) = my(S=x,C=1,D=1); for(i=0,2*n, S = x*C*D + O(x^(2*n+2)); C = 1 + x*S*D; D = 1 + m*x*S*C;); polcoeff(polcoeff(D,2*n,x),k,m)}
for(n=0,15, for(k=0,n, print1(T(n,k),", "));print(""))
-
/* Explicit formula for T(n, k) */
{T(n, k) = if(n==k, 1, if(k==0, 0, (2*n-k)!*(n+k-1)!/(k!*(n-k)!*(2*k-1)!*(2*n-2*k+1)!) ))}
for(n=0, 15, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Dec 11 2016
A278745
G.f. satisfies: A(x) = x*(1 - x^2*A(x)^2)/(1 + x^2*A(x)^2)^2.
Original entry on oeis.org
1, -3, 23, -232, 2671, -33247, 435732, -5923596, 82761455, -1181085841, 17143012047, -252288796800, 3755832135428, -56459641712052, 855828940166728, -13066760979482436, 200764834403473647, -3101861571115286485, 48161808069368073765, -751107354803633628504, 11760546724914570170423, -184805245095048170080367, 2913533082844307942651984, -46070266558711138024672784, 730480047034266200626268676
Offset: 1
G.f.: A(x) = x - 3*x^5 + 23*x^9 - 232*x^13 + 2671*x^17 - 33247*x^21 + 435732*x^25 - 5923596*x^29 + 82761455*x^33 - 1181085841*x^37 + 17143012047*x^41 +...
such that A(x) = x*(1 - x^2*A(x)^2)/(1 + x^2*A(x)^2)^2.
RELATED SERIES.
A(x)^2 = x^2 - 6*x^6 + 55*x^10 - 602*x^14 + 7263*x^18 - 93192*x^22 + 1247636*x^26 - 17230290*x^30 + 243669007*x^34 - 3511010950*x^38 + 51361157967*x^42 +...
G.f. A(x) = x*C(x)*D(x) where
C(x) = (1 + x*A(x))/(1 + x^2*A(x)^2) = 1 + x^2 - x^4 - 4*x^6 + 7*x^8 + 33*x^10 - 68*x^12 - 344*x^14 + 767*x^16 + 4035*x^18 +...+ A243863(n)*x^(2*n) +...
D(x) = (1 - x*A(x))/(1 + x^2*A(x)^2) = 1 - x^2 - x^4 + 4*x^6 + 7*x^8 - 33*x^10 - 68*x^12 + 344*x^14 + 767*x^16 - 4035*x^18 +...+ (-1)^n*A243863(n)*x^(2*n) +...
such that C(x)^2 - A(x)^2 = C(x) and D(x)^2 + A(x)^2 = D(x).
-
{a(n) = my(A=x); for(i=0,4*n, A = x*(1 - x^2*A^2)/(1 + x^2*A^2 +x*O(x^(4*n)))^2 ); polcoeff(A,4*n-3)}
for(n=1,30,print1(a(n),", "))
-
/* Explicit formula from triangle A278880 */
{a(n) = sum(k=0,2*n-2, (-1)^k * (4*n-3)/((4*n-2*k-3)*(2*k+1)) * binomial(4*n-k-4, k) * binomial(2*n+k-2, 2*n-k-2) )}
for(n=1,30,print1(a(n),", "))
A258313
G.f. A(x) satisfies: A(x) = B(x)*C(x) where B(x) = 1 + x*A(x)*C(x) and C(x) = 1 + 2*x*A(x)*B(x).
Original entry on oeis.org
1, 3, 15, 93, 641, 4719, 36335, 289017, 2356321, 19586283, 165364799, 1414193205, 12224831937, 106645825047, 937685498271, 8301129707121, 73929906605249, 661919872559763, 5954449287679919, 53791836313371405, 487807821246726273, 4438980860105747967, 40521481906592540175
Offset: 0
G.f.: A(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 641*x^4 + 4719*x^5 + 36335*x^6 +...
where A(x) = B(x)*C(x):
B(x) = 1 + x + 5*x^2 + 29*x^3 + 193*x^4 + 1389*x^5 + 10525*x^6 +...
C(x) = 1 + 2*x + 8*x^2 + 46*x^3 + 304*x^4 + 2178*x^5 + 16456*x^6 +...
Related series:
A(x)*B(x) = 1 + 4*x + 23*x^2 + 152*x^3 + 1089*x^4 + 8228*x^5 +...
A(x)*C(x) = 1 + 5*x + 29*x^2 + 193*x^3 + 1389*x^4 + 10525*x^5 +...
-
Table[Sum[2^k*(2*n + 1)/((2*n - 2*k + 1)*(2*k + 1))*Binomial[2*n - k, k]*Binomial[n + k, n - k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 09 2016, after Paul D. Hanna *)
-
{a(n)=local(A=1+x,B=1+x,C=1+2*x);for(i=1,n, A = B*C +x*O(x^n); B = 1 + x*A*C + x*O(x^n); C = 1 + 2*x*A*B + x*O(x^n)); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(A=1); A = (1/x) * serreverse( x*(1-2*x^2)^2 / ((1+x)*(1+2*x) +x*O(x^n)) ); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
-
/* Explicit formula from triangle A278880 */
{a(n) = sum(k=0,n, 2^k * (2*n+1)/((2*n-2*k+1)*(2*k+1)) * binomial(2*n-k, k) * binomial(n+k, n-k) )}
for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Dec 08 2016
A278883
a(n) = (4*n+1) * ( binomial(3*n,n)/(2*n+1) )^2.
Original entry on oeis.org
1, 5, 81, 1872, 51425, 1565109, 50979600, 1742711616, 61765676577, 2251396558125, 83924761860225, 3186277484832000, 122829049870699536, 4796448751641900752, 189381233826675892800, 7549371503605704934656, 303473219026059360959265, 12289574902507266828093525, 500960076377670398672062425, 20540854991655352005504930000, 846696245823312839372671355025, 35068049224094584278339245227125, 1458752047374053912228252043321600
Offset: 0
-
{a(n) = (4*n+1) * ( binomial(3*n,n)/(2*n+1) )^2}
for(n=0,20,print1(a(n),", "))
A364757
The pyramidal array T(r,g,b) = (r+g+b)/((g+b)*(r+b))*C(r+g,b-1)*C(g+b,r)*C(r+b,g), where 1 <= b <= ceiling((r+g+b)/2) and 0 <= r,g <= floor((r+g+b)/2). Read first over the layers corresponding to fixed sum r+g+b, then over the diagonals corresponding to fixed b.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 2, 2, 1, 8, 1, 5, 15, 15, 1, 5, 1, 3, 3, 8, 54, 8, 1, 27, 27, 1, 7, 70, 70, 42, 168, 42, 1, 14, 14, 1, 4, 4, 30, 192, 30, 20, 400, 400, 20, 1, 64, 200, 64, 1, 9, 210, 210, 405, 1500, 405, 90, 900, 900, 90, 1, 30, 81, 30, 1, 5, 5, 80, 500, 80, 147, 2625, 2625, 147, 40, 1750, 5000, 1750, 40, 1, 125, 875, 875, 125, 1
Offset: 1
The first few layers of the pyramidal array are:
-----------------------------------------------------------------------
1 (r+g+b=1), (b=1) T(0,0,1)
LAYER SUM: 1
-----------------------------------------------------------------------
1 1 (r+g+b=2), (b=1) T(0,1,1) T(1,0,1)
LAYER SUM: 2
-----------------------------------------------------------------------
3 (r+g+b=3), (b=1) T(1,1,1)
1 1 (r+g+b=3), (b=2) T(0,1,2) T(1,0,2)
LAYER SUM: 5
-----------------------------------------------------------------------
2 2 (r+g+b=4), (b=1) T(1,2,1) T(2,1,1)
1 8 1 (r+g+b=4), (b=2) T(0,2,2) T(1,1,2) T(2,0,2)
LAYER SUM: 14
-----------------------------------------------------------------------
5 (r+g+b=5), (b=1) T(2,2,1)
15 15 (r+g+b=5), (b=2) T(1,2,2) T(2,1,2)
1 5 1 (r+g+b=5), (b=3) T(0,2,3) T(1,1,3) T(2,0,3)
LAYER SUM: 42
-----------------------------------------------------------------------
3 3 (r+g+b=6), (b=1) T(2,3,1) T(3,2,1)
8 54 8 (r+g+b=6), (b=2) T(1,3,2) T(2,2,2) T(3,1,2)
1 27 27 1 (r+g+b=6), (b=3) T(0,3,3) T(1,2,3) T(2,1,3) T(3,0,3)
LAYER SUM: 132
-----------------------------------------------------------------------
7 (r+g+b=7), (b=1) T(3,3,1)
70 70 (r+g+b=7), (b=2) T(2,3,2) T(3,2,2)
42 168 42 (r+g+b=7), (b=3) T(1,3,3) T(2,2,3) T(3,1,3)
1 14 14 1 (r+g+b=7), (b=4) T(0,3,4) T(1,2,4) T(2,1,4) T(3,0,4)
LAYER SUM: 429
-----------------------------------------------------------------------
Showing 1-6 of 6 results.
Comments