cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A278881 Triangle where g.f. C = C(x,m) and related series S = S(x,m) and D = D(x,m) satisfy S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C, as read by rows of coefficients T(n,k) of x^(2*n)*m^k in C(x,m) for n>=0, k=0..n.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 8, 3, 0, 1, 20, 30, 4, 0, 1, 40, 147, 80, 5, 0, 1, 70, 504, 672, 175, 6, 0, 1, 112, 1386, 3600, 2310, 336, 7, 0, 1, 168, 3276, 14520, 18150, 6552, 588, 8, 0, 1, 240, 6930, 48048, 102245, 72072, 16170, 960, 9, 0, 1, 330, 13464, 137280, 455455, 546546, 240240, 35904, 1485, 10, 0, 1, 440, 24453, 350064, 1701700, 3179904, 2382380, 700128, 73359, 2200, 11, 0, 1, 572, 42042, 815100, 5542680, 15148224, 17672928, 8868288, 1833975, 140140, 3146, 12, 0
Offset: 0

Views

Author

Paul D. Hanna, Nov 29 2016

Keywords

Examples

			This triangle of coefficients of x^(2*n)*m^k in C(x,m) for n>=0, k=0..n, begins:
1;
1, 0;
1, 2, 0;
1, 8, 3, 0;
1, 20, 30, 4, 0;
1, 40, 147, 80, 5, 0;
1, 70, 504, 672, 175, 6, 0;
1, 112, 1386, 3600, 2310, 336, 7, 0;
1, 168, 3276, 14520, 18150, 6552, 588, 8, 0;
1, 240, 6930, 48048, 102245, 72072, 16170, 960, 9, 0;
1, 330, 13464, 137280, 455455, 546546, 240240, 35904, 1485, 10, 0;
1, 440, 24453, 350064, 1701700, 3179904, 2382380, 700128, 73359, 2200, 11, 0;
1, 572, 42042, 815100, 5542680, 15148224, 17672928, 8868288, 1833975, 140140, 3146, 12, 0; ...
Generating function:
C(x,m) = 1 + x^2 + (1 + 2*m)*x^4 + (1 + 8*m + 3*m^2)*x^6 +
(1 + 20*m + 30*m^2 + 4*m^3)*x^8 +
(1 + 40*m + 147*m^2 + 80*m^3 + 5*m^4)*x^10 +
(1 + 70*m + 504*m^2 + 672*m^3 + 175*m^4 + 6*m^5)*x^12 +
(1 + 112*m + 1386*m^2 + 3600*m^3 + 2310*m^4 + 336*m^5 + 7*m^6)*x^14 +
(1 + 168*m + 3276*m^2 + 14520*m^3 + 18150*m^4 + 6552*m^5 + 588*m^6 + 8*m^7)*x^16 +...
where g.f. C = C(x,m) and related series S = S(x,m) and D = D(x,m) satisfy
S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C,
such that
C = C^2 - S^2,
D = D^2 - m*S^2.
The square of the g.f. begins:
C(x,m)^2 = 1 + 2*x^2 + (4*m + 3)*x^4 + (6*m^2 + 20*m + 4)*x^6 +
(8*m^3 + 70*m^2 + 60*m + 5)*x^8 +
(10*m^4 + 180*m^3 + 392*m^2 + 140*m + 6)*x^10 +
(12*m^5 + 385*m^4 + 1680*m^3 + 1512*m^2 + 280*m + 7)*x^12 +
(14*m^6 + 728*m^5 + 5544*m^4 + 9900*m^3 + 4620*m^2 + 504*m + 8)*x^14 +
(16*m^7 + 1260*m^6 + 15288*m^5 + 47190*m^4 + 43560*m^3 + 12012*m^2 + 840*m + 9)*x^16 +
(18*m^8 + 2040*m^7 + 36960*m^6 + 180180*m^5 + 286286*m^4 + 156156*m^3 + 27720*m^2 + 1320*m + 10)*x^18 +...
		

Crossrefs

Cf. A278880 (S(x,m)), A278882 (D(x,m)), A278884 (central terms).
Cf. A001764 (row sums), A000108, A258314 (C(x,m) at m=2), A243863.

Programs

  • PARI
    {T(n,k) = my(S=x,C=1,D=1); for(i=0,2*n, S = x*C*D + O(x^(2*n+2)); C = 1 + x*S*D; D = 1 + m*x*S*C;); polcoeff(polcoeff(C,2*n,x),k,m)}
    for(n=0,15, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    /* Explicit formula for T(n, k) */
    {T(n,k) = if(k==0,1, if(n==k,0, (n+k)!*(2*n-k-1)!/(k!*(n-k)!*(2*k+1)!*(2*n-2*k-1)!) ))}
    for(n=0, 15, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Dec 11 2016

Formula

G.f. C = C(x,m), and related functions S = S(x,m) and D = D(x,m) satisfy:
(1.a) S = x*C*D.
(1.b) C = 1 + x*S*D.
(1.c) D = 1 + m*x*S*C.
...
(2.a) C = C^2 - S^2.
(2.b) D = D^2 - m*S^2.
(2.c) C = (1 + sqrt(1 + 4*S^2))/2.
(2.d) D = (1 + sqrt(1 + 4*m*S^2))/2.
...
(3.a) S = x*(1 + x*S)*(1 + m*x*S) / (1 - m*x^2*S^2)^2.
(3.b) C = (1 + x*S) / (1 - m*x^2*S^2).
(3.c) D = (1 + m*x*S) / (1 - m*x^2*S^2).
(3.d) S = x/((1 - x^2*D^2)*(1 - m*x^2*C^2)).
(3.e) C = 1/(1 - x^2*D^2).
(3.f) D = 1/(1 - m*x^2*C^2).
...
(4.a) x = m^2*x^4*S^5 - 2*m*x^2*S^3 - m*x^3*S^2 + (1 - (m+1)*x^2)*S.
(4.b) 0 = 1 - (1-x^2)*C - 2*m*x^2*C^2 + 2*m*x^2*C^3 + m^2*x^4*C^4 - m^2*x^4*C^5.
(4.c) 0 = 1 - (1-m*x^2)*D - 2*x^2*D^2 + 2*x^2*D^3 + x^4*D^4 - x^4*D^5.
...
(5.a) S(x,m) = Series_Reversion( x*G(-x^2)*G(-m*x^2) ), where G(x) = 1 + x*G(x)^2 is the g.f. of the Catalan numbers (A000108).
Logarithmic derivatives.
(6.a) C'/C = 2*S*S' / (C^2 + S^2).
(6.b) D'/D = 2*m*S*S' / (D^2 + m*S^2).
...
T(n,k) = (k+1) * A082680(n+1,k+1) for n>=0 with T(0,0) = 1 and T(n,n) = 1 for n>0. - Paul D. Hanna, Dec 11 2016
T(n,k) = (n+k)!*(2*n-k-1)!/(k!*(n-k)!*(2*k+1)!*(2*n-2*k-1)!) for n>k>0 with T(n,0) = 1 and T(n,n) = 0 for n>0. - Paul D. Hanna, Dec 11 2016
Row sums yield A001764(n) = binomial(3*n,n)/(2*n+1).
Central terms: T(2*n,n) = binomial(3*n-1,n) * binomial(3*n,n)/(2*n+1).
Sum_{k=0..n} 2^k * T(n,k) = A258314(n-1) for n>=0.
Sum_{k=0..n} (-1)^k * T(n,k) = A243863(n) for n>=0.

A278882 Triangle where g.f. D = D(x,m) and related series S = S(x,m) and C = C(x,m) satisfy S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C, as read by rows of coefficients T(n,k) of x^(2*n)*m^k in C(x,m) for n>=1, k=0..n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 8, 1, 0, 4, 30, 20, 1, 0, 5, 80, 147, 40, 1, 0, 6, 175, 672, 504, 70, 1, 0, 7, 336, 2310, 3600, 1386, 112, 1, 0, 8, 588, 6552, 18150, 14520, 3276, 168, 1, 0, 9, 960, 16170, 72072, 102245, 48048, 6930, 240, 1, 0, 10, 1485, 35904, 240240, 546546, 455455, 137280, 13464, 330, 1, 0, 11, 2200, 73359, 700128, 2382380, 3179904, 1701700, 350064, 24453, 440, 1, 0, 12, 3146, 140140, 1833975, 8868288, 17672928, 15148224, 5542680, 815100, 42042, 572, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 29 2016

Keywords

Examples

			This triangle of coefficients of x^(2*n)*m^k in D(x,m) for n>=0, k=0..n, begins:
1;
0, 1;
0, 2, 1;
0, 3, 8, 1;
0, 4, 30, 20, 1;
0, 5, 80, 147, 40, 1;
0, 6, 175, 672, 504, 70, 1;
0, 7, 336, 2310, 3600, 1386, 112, 1;
0, 8, 588, 6552, 18150, 14520, 3276, 168, 1;
0, 9, 960, 16170, 72072, 102245, 48048, 6930, 240, 1;
0, 10, 1485, 35904, 240240, 546546, 455455, 137280, 13464, 330, 1;
0, 11, 2200, 73359, 700128, 2382380, 3179904, 1701700, 350064, 24453, 440, 1;
0, 12, 3146, 140140, 1833975, 8868288, 17672928, 15148224, 5542680, 815100, 42042, 572, 1; ...
Generating function:
D(x,m) = 1 + m*x^2 + (2*m + m^2)*x^4 + (3*m + 8*m^2 + m^3)*x^6 +
(4*m + 30*m^2 + 20*m^3 + m^4)*x^8 +
(5*m + 80*m^2 + 147*m^3 + 40*m^4 + m^5)*x^10 +
(6*m + 175*m^2 + 672*m^3 + 504*m^4 + 70*m^5 + m^6)*x^12 +
(7*m + 336*m^2 + 2310*m^3 + 3600*m^4 + 1386*m^5 + 112*m^6 + m^7)*x^14 +
(8*m + 588*m^2 + 6552*m^3 + 18150*m^4 + 14520*m^5 + 3276*m^6 + 168*m^7 + m^8)*x^16 +...
where g.f. D = D(x,m) and related series S = S(x,m) and C = C(x,m) satisfy
S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C,
such that
C = C^2 - S^2,
D = D^2 - m*S^2.
The square of the g.f. begins:
D(x,m)^2 = 1 + 2*m*x^2 + (3*m^2 + 4*m)*x^4 +
(4*m^3 + 20*m^2 + 6*m)*x^6 +
(5*m^4 + 60*m^3 + 70*m^2 + 8*m)*x^8 +
(6*m^5 + 140*m^4 + 392*m^3 + 180*m^2 + 10*m)*x^10 +
(7*m^6 + 280*m^5 + 1512*m^4 + 1680*m^3 + 385*m^2 + 12*m)*x^12 +
(8*m^7 + 504*m^6 + 4620*m^5 + 9900*m^4 + 5544*m^3 + 728*m^2 + 14*m)*x^14 +
(9*m^8 + 840*m^7 + 12012*m^6 + 43560*m^5 + 47190*m^4 + 15288*m^3 + 1260*m^2 + 16*m)*x^16 +
(10*m^9 + 1320*m^8 + 27720*m^7 + 156156*m^6 + 286286*m^5 + 180180*m^4 + 36960*m^3 + 2040*m^2 + 18*m)*x^18 +...
		

Crossrefs

Cf. A278880 (S(x,m)), A278881 (C(x,m)), A278884 (central terms).
Cf. A001764 (row sums), A000108, A258315, A243863.

Programs

  • PARI
    {T(n,k) = my(S=x,C=1,D=1); for(i=0,2*n, S = x*C*D + O(x^(2*n+2)); C = 1 + x*S*D; D = 1 + m*x*S*C;); polcoeff(polcoeff(D,2*n,x),k,m)}
    for(n=0,15, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    /* Explicit formula for T(n, k) */
    {T(n, k) = if(n==k, 1, if(k==0, 0, (2*n-k)!*(n+k-1)!/(k!*(n-k)!*(2*k-1)!*(2*n-2*k+1)!) ))}
    for(n=0, 15, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Dec 11 2016

Formula

G.f. D = D(x,m), and related functions S = S(x,m) and C = C(x,m) satisfy:
(1.a) S = x*C*D.
(1.b) C = 1 + x*S*D.
(1.c) D = 1 + m*x*S*C.
...
(2.a) C = C^2 - S^2.
(2.b) D = D^2 - m*S^2.
(2.c) C = (1 + sqrt(1 + 4*S^2))/2.
(2.d) D = (1 + sqrt(1 + 4*m*S^2))/2.
...
(3.a) S = x*(1 + x*S)*(1 + m*x*S) / (1 - m*x^2*S^2)^2.
(3.b) C = (1 + x*S) / (1 - m*x^2*S^2).
(3.c) D = (1 + m*x*S) / (1 - m*x^2*S^2).
(3.d) S = x/((1 - x^2*D^2)*(1 - m*x^2*C^2)).
(3.e) C = 1/(1 - x^2*D^2).
(3.f) D = 1/(1 - m*x^2*C^2).
...
(4.a) x = m^2*x^4*S^5 - 2*m*x^2*S^3 - m*x^3*S^2 + (1 - (m+1)*x^2)*S.
(4.b) 0 = 1 - (1-x^2)*C - 2*m*x^2*C^2 + 2*m*x^2*C^3 + m^2*x^4*C^4 - m^2*x^4*C^5.
(4.c) 0 = 1 - (1-m*x^2)*D - 2*x^2*D^2 + 2*x^2*D^3 + x^4*D^4 - x^4*D^5.
...
(5.a) S(x,m) = Series_Reversion( x*G(-x^2)*G(-m*x^2) ), where G(x) = 1 + x*G(x)^2 is the g.f. of the Catalan numbers (A000108).
Logarithmic derivatives.
(6.a) C'/C = 2*S*S' / (C^2 + S^2).
(6.b) D'/D = 2*m*S*S' / (D^2 + m*S^2).
...
T(n,k) = (n-k+1) * A082680(n+1,n-k+1) for n>=0 with T(0,0) = 1 and T(n,0) = 0 for n>0. - Paul D. Hanna, Dec 11 2016
T(n,k) = (2*n-k)!*(n+k-1)!/(k!*(n-k)!*(2*k-1)!*(2*n-2*k+1)!) for n>k>0 with T(n,0) = 1 and T(n,n) = 0 for n>0. - Paul D. Hanna, Dec 11 2016
Row sums yield A001764(n) = binomial(3*n,n)/(2*n+1).
Central terms: T(2*n,n) = binomial(3*n-1,n) * binomial(3*n,n)/(2*n+1).
Sum_{k=0..n} 2^k * T(n,k) = A258315(n-1) for n>=0.
Sum_{k=0..n} (-1)^k * T(n,k) = (-1)^n * A243863(n) for n>=0.

A278745 G.f. satisfies: A(x) = x*(1 - x^2*A(x)^2)/(1 + x^2*A(x)^2)^2.

Original entry on oeis.org

1, -3, 23, -232, 2671, -33247, 435732, -5923596, 82761455, -1181085841, 17143012047, -252288796800, 3755832135428, -56459641712052, 855828940166728, -13066760979482436, 200764834403473647, -3101861571115286485, 48161808069368073765, -751107354803633628504, 11760546724914570170423, -184805245095048170080367, 2913533082844307942651984, -46070266558711138024672784, 730480047034266200626268676
Offset: 1

Views

Author

Paul D. Hanna, Dec 01 2016

Keywords

Examples

			G.f.: A(x) = x - 3*x^5 + 23*x^9 - 232*x^13 + 2671*x^17 - 33247*x^21 + 435732*x^25 - 5923596*x^29 + 82761455*x^33 - 1181085841*x^37 + 17143012047*x^41 +...
such that A(x) = x*(1 - x^2*A(x)^2)/(1 + x^2*A(x)^2)^2.
RELATED SERIES.
A(x)^2 = x^2 - 6*x^6 + 55*x^10 - 602*x^14 + 7263*x^18 - 93192*x^22 + 1247636*x^26 - 17230290*x^30 + 243669007*x^34 - 3511010950*x^38 + 51361157967*x^42 +...
G.f. A(x) = x*C(x)*D(x) where
C(x) = (1 + x*A(x))/(1 + x^2*A(x)^2) = 1 + x^2 - x^4 - 4*x^6 + 7*x^8 + 33*x^10 - 68*x^12 - 344*x^14 + 767*x^16 + 4035*x^18 +...+ A243863(n)*x^(2*n) +...
D(x) = (1 - x*A(x))/(1 + x^2*A(x)^2) = 1 - x^2 - x^4 + 4*x^6 + 7*x^8 - 33*x^10 - 68*x^12 + 344*x^14 + 767*x^16 - 4035*x^18 +...+ (-1)^n*A243863(n)*x^(2*n) +...
such that C(x)^2 - A(x)^2 = C(x) and D(x)^2 + A(x)^2 = D(x).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(i=0,4*n, A = x*(1 - x^2*A^2)/(1 + x^2*A^2 +x*O(x^(4*n)))^2 ); polcoeff(A,4*n-3)}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    /* Explicit formula from triangle A278880 */
    {a(n) = sum(k=0,2*n-2, (-1)^k * (4*n-3)/((4*n-2*k-3)*(2*k+1)) * binomial(4*n-k-4, k) * binomial(2*n+k-2, 2*n-k-2) )}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = x/( G(A(x)^2) * G(-A(x)^2) ) where G(x) = 1 + x*G(x)^2.
(2) A(x) = x - x^3*A(x)^2 - 2*x^2*A(x)^3 - x^4*A(x)^5.
(3) A(x) = Series_Reversion( x*(1 + x^2)^2 / (1 - x^2) ).
(4) A(x) = x*C(x)*D(x) where
(4.a) C(x) = C(x)^2 - A(x)^2.
(4.b) D(x) = D(x)^2 + A(x)^2.
(4.c) C(x) = (1 + x*A(x))/(1 + x^2*A(x)^2).
(4.d) D(x) = (1 - x*A(x))/(1 + x^2*A(x)^2).
(4.e) C(x) = (1 + sqrt(1 + 4*A(x)^2))/2.
(4.f) D(x) = (1 + sqrt(1 - 4*A(x)^2))/2.
(4.g) C(x) = 1/G(-A(x)^2) where G(x) = 1 + x*G(x)^2.
(4.h) D(x) = 1/G(A(x)^2) where G(x) = 1 + x*G(x)^2 is the g.f. of Catalan numbers (A000108).
a(n) = Sum_{k=0..2*n-2} (-1)^k * A278880(2*n-1,k) for n>=1.
a(n) = Sum_{k=0..2*n-2} (-1)^k * (4*n-3)/((4*n-2*k-3)*(2*k+1)) * binomial(4*n-k-4, k) * binomial(2*n+k-2, 2*n-k-2). - Paul D. Hanna, Dec 08 2016
D-finite with recurrence -256*(n-1)*(4*n-5)*(2*n-1)*(142049551*n -178081473) *(4*n-3)*a(n) +16*(-1155885932064*n^5 +6748253449456*n^4 -14295401330216*n^3 +11571204221621*n^2 +77734459403*n -3289778607450)*a(n-1) +6*(3234453621264*n^5 -46690598461608*n^4 +268825512890063*n^3 -771308050258028*n^2 +1102485156931319*n -627947169605910)*a(n-2) -3*(n-3) *(2231943393*n -5530565638)*(3*n-10) *(2*n-7)*(3*n-11)*a(n-3)=0. - R. J. Mathar, Nov 22 2024

A258313 G.f. A(x) satisfies: A(x) = B(x)*C(x) where B(x) = 1 + x*A(x)*C(x) and C(x) = 1 + 2*x*A(x)*B(x).

Original entry on oeis.org

1, 3, 15, 93, 641, 4719, 36335, 289017, 2356321, 19586283, 165364799, 1414193205, 12224831937, 106645825047, 937685498271, 8301129707121, 73929906605249, 661919872559763, 5954449287679919, 53791836313371405, 487807821246726273, 4438980860105747967, 40521481906592540175
Offset: 0

Views

Author

Paul D. Hanna, May 25 2015

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 641*x^4 + 4719*x^5 + 36335*x^6 +...
where A(x) = B(x)*C(x):
B(x) = 1 + x + 5*x^2 + 29*x^3 + 193*x^4 + 1389*x^5 + 10525*x^6 +...
C(x) = 1 + 2*x + 8*x^2 + 46*x^3 + 304*x^4 + 2178*x^5 + 16456*x^6 +...
Related series:
A(x)*B(x) = 1 + 4*x + 23*x^2 + 152*x^3 + 1089*x^4 + 8228*x^5 +...
A(x)*C(x) = 1 + 5*x + 29*x^2 + 193*x^3 + 1389*x^4 + 10525*x^5 +...
		

Crossrefs

Cf. A258314 (B(x)), A258315 (C(x)), A278880.

Programs

  • Mathematica
    Table[Sum[2^k*(2*n + 1)/((2*n - 2*k + 1)*(2*k + 1))*Binomial[2*n - k, k]*Binomial[n + k, n - k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 09 2016, after Paul D. Hanna *)
  • PARI
    {a(n)=local(A=1+x,B=1+x,C=1+2*x);for(i=1,n, A = B*C +x*O(x^n); B = 1 + x*A*C + x*O(x^n); C = 1 + 2*x*A*B + x*O(x^n)); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1); A = (1/x) * serreverse( x*(1-2*x^2)^2 / ((1+x)*(1+2*x) +x*O(x^n)) ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Explicit formula from triangle A278880 */
    {a(n) = sum(k=0,n, 2^k * (2*n+1)/((2*n-2*k+1)*(2*k+1)) * binomial(2*n-k, k) * binomial(n+k, n-k) )}
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Dec 08 2016

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + 3*x*A(x) + 2*x^2*A(x)^2*(1 + 2*A(x)) - 4*x^4*A(x)^5.
(2) A(x) = (1 + x*A(x))*(1 + 2*x*A(x)) / (1 - 2*x^2*A(x)^2)^2.
(3) A(x) = (1/x) * Series_Reversion( x*(1-2*x^2)^2 / ((1+x)*(1+2*x)) ).
Other relations involving A=A(x), B=B(x), and C=C(x) are:
(a) B = (1 + x*A) / (1 - 2*x^2*A^2).
(b) C = (1 + 2*x*A) / (1 - 2*x^2*A^2).
(c) B = 1/(1 - x*C^2).
(d) C = 1/(1 - 2*x*B^2).
a(n) = Sum_{k=0..n} 2^k * (2*n+1)/((2*n-2*k+1)*(2*k+1)) * binomial(2*n-k, k) * binomial(n+k, n-k). - Paul D. Hanna, Dec 08 2016
Recurrence: 16*n*(n+1)*(2*n-1)*(2*n+1)*(78144*n^5 - 638176*n^4 + 2009556*n^3 - 3030476*n^2 + 2162967*n - 571095)*a(n) = 6*n*(2*n - 1)*(3750912*n^7 - 30632448*n^6 + 95859584*n^5 - 141041184*n^4 + 91266236*n^3 - 10305348*n^2 - 11143087*n + 2769495)*a(n-1) + 18*(1875456*n^9 - 19067136*n^8 + 81388448*n^7 - 188788320*n^6 + 255050924*n^5 - 194874764*n^4 + 66686587*n^3 + 7734535*n^2 - 12646725*n + 2646000)*a(n-2) + 18*(n-2)*(1875456*n^8 - 18129408*n^7 + 70578528*n^6 - 140304800*n^5 + 146662564*n^4 - 69042202*n^3 - 184198*n^2 + 11212005*n - 2646000)*a(n-3) + 3*(n-3)*(n-2)*(3*n - 10)*(3*n - 5)*(78144*n^5 - 247456*n^4 + 238292*n^3 - 49424*n^2 - 31301*n + 10920)*a(n-4). - Vaclav Kotesovec, Dec 09 2016

A278883 a(n) = (4*n+1) * ( binomial(3*n,n)/(2*n+1) )^2.

Original entry on oeis.org

1, 5, 81, 1872, 51425, 1565109, 50979600, 1742711616, 61765676577, 2251396558125, 83924761860225, 3186277484832000, 122829049870699536, 4796448751641900752, 189381233826675892800, 7549371503605704934656, 303473219026059360959265, 12289574902507266828093525, 500960076377670398672062425, 20540854991655352005504930000, 846696245823312839372671355025, 35068049224094584278339245227125, 1458752047374053912228252043321600
Offset: 0

Views

Author

Paul D. Hanna, Nov 29 2016

Keywords

Comments

Central terms of triangle A278880; a(n) = A278880(2*n+1, n) for n>=0.

Crossrefs

Cf. A278880.

Programs

  • PARI
    {a(n) = (4*n+1) * ( binomial(3*n,n)/(2*n+1) )^2}
    for(n=0,20,print1(a(n),", "))

A364757 The pyramidal array T(r,g,b) = (r+g+b)/((g+b)*(r+b))*C(r+g,b-1)*C(g+b,r)*C(r+b,g), where 1 <= b <= ceiling((r+g+b)/2) and 0 <= r,g <= floor((r+g+b)/2). Read first over the layers corresponding to fixed sum r+g+b, then over the diagonals corresponding to fixed b.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 2, 2, 1, 8, 1, 5, 15, 15, 1, 5, 1, 3, 3, 8, 54, 8, 1, 27, 27, 1, 7, 70, 70, 42, 168, 42, 1, 14, 14, 1, 4, 4, 30, 192, 30, 20, 400, 400, 20, 1, 64, 200, 64, 1, 9, 210, 210, 405, 1500, 405, 90, 900, 900, 90, 1, 30, 81, 30, 1, 5, 5, 80, 500, 80, 147, 2625, 2625, 147, 40, 1750, 5000, 1750, 40, 1, 125, 875, 875, 125, 1
Offset: 1

Views

Author

Robert Muth, Aug 05 2023

Keywords

Comments

T(r,g,b) is the number of injectively 3-colored trees with r red vertices, g green vertices, and b blue vertices, including a root vertex which is colored blue.
Summing T(r,g,b) over all r,g,b such that r+g+b=n yields the n-th Catalan number, A000108(n).
Column (or row) sums within each fixed r+g+b=n layer yield the number of ordered trees on n edges containing a fixed number of nodes adjacent to a leaf, A108759(n).
Main antidiagonal (corresponding to maximal value b = ceiling((r+g+b)/2)) within each fixed odd (r+g+b) layer is the number of "fighting fish" with fixed numbers of left lower free and right lower free edges with a marked tail A278880.

Examples

			The first few layers of the pyramidal array are:
-----------------------------------------------------------------------
      1           (r+g+b=1), (b=1)           T(0,0,1)
                                                         LAYER SUM:   1
-----------------------------------------------------------------------
     1 1          (r+g+b=2), (b=1)        T(0,1,1) T(1,0,1)
                                                         LAYER SUM:   2
-----------------------------------------------------------------------
      3           (r+g+b=3), (b=1)           T(1,1,1)
     1 1          (r+g+b=3), (b=2)        T(0,1,2) T(1,0,2)
                                                         LAYER SUM:   5
-----------------------------------------------------------------------
     2 2          (r+g+b=4), (b=1)        T(1,2,1) T(2,1,1)
    1 8 1         (r+g+b=4), (b=2)     T(0,2,2) T(1,1,2) T(2,0,2)
                                                         LAYER SUM:  14
-----------------------------------------------------------------------
      5           (r+g+b=5), (b=1)           T(2,2,1)
    15 15         (r+g+b=5), (b=2)        T(1,2,2) T(2,1,2)
   1  5  1        (r+g+b=5), (b=3)     T(0,2,3) T(1,1,3) T(2,0,3)
                                                         LAYER SUM:  42
-----------------------------------------------------------------------
     3  3         (r+g+b=6), (b=1)        T(2,3,1) T(3,2,1)
   8  54  8       (r+g+b=6), (b=2)     T(1,3,2) T(2,2,2) T(3,1,2)
 1  27  27  1     (r+g+b=6), (b=3)  T(0,3,3) T(1,2,3) T(2,1,3) T(3,0,3)
                                                         LAYER SUM: 132
-----------------------------------------------------------------------
      7           (r+g+b=7), (b=1)            T(3,3,1)
   70   70        (r+g+b=7), (b=2)        T(2,3,2) T(3,2,2)
 42  168  42      (r+g+b=7), (b=3)     T(1,3,3) T(2,2,3) T(3,1,3)
1   14  14   1    (r+g+b=7), (b=4)  T(0,3,4) T(1,2,4) T(2,1,4) T(3,0,4)
                                                         LAYER SUM: 429
-----------------------------------------------------------------------
		

Crossrefs

Formula

T(r,g,b) = ((r+g+b)/((g+b)*(r+b)))*C(r+g,b-1)*C(g+b,r)*C(r+b,g).
T(r,g,b) = ((r+g+b)/((g+b)*(r+b))) * ((r+g)!/((r+g-b+1)!*(b-1)!)) * ((g+b)!/((g+b-r)!*r!)) * ((r+b)!/((r+b-g)!*g!)).
Showing 1-6 of 6 results.