A278907 a(n) = floor((n*2^(n+1)+2)/(2*n-(-1)^n+3)) - floor((n*2^(n+1)-2)/(2*n-(-1)^n+3)).
2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1
Offset: 0
Examples
a(0) = b(0) - c(0) = 1 - (-1) = 2, a(1) = b(1) - c(1) = 1 - 0 = 1, a(2) = b(2) - c(2) = 3 - 2 = 1.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A002064 (Cullen numbers).
Programs
-
Magma
[((n*2^(n+1)+2) div (2*n-(-1)^n+3))-((n*2^(n+1)-2) div (2*n-(-1)^n+3)): n in [0..100]];
-
Mathematica
a[n_] := Floor[(n*2^(n + 1) + 2)/(2*n - (-1)^n + 3)] - Floor[(n*2^(n + 1) - 2)/(2*n - (-1)^n + 3)]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Apr 20 2017 *)
-
PARI
for(n=0,50, print1(floor((n*2^(n+1)+2)/(2*n-(-1)^n+3)) - floor((n*2^(n+1)-2)/(2*n-(-1)^n+3)), ", ")) \\ G. C. Greubel, Apr 20 2017
Extensions
Definition corrected by R. J. Mathar, Dec 02 2016
Comments