A278969 Number of 7-digit numbers whose sum of digits is n.
1, 7, 28, 84, 210, 462, 924, 1716, 3003, 5004, 7995, 12306, 18312, 26418, 37038, 50568, 67353, 87648, 111573, 139068, 169863, 203463, 239148, 275988, 312873, 348558, 381723, 411048, 435303, 453438, 464653, 468448, 464653, 453438, 435303, 411048, 381723, 348558, 312873, 275988, 239148, 203463, 169863, 139068, 111573, 87648, 67353, 50568, 37038, 26418, 18312, 12306, 7995, 5004, 3003, 1716, 924, 462, 210, 84, 28, 7, 1
Offset: 1
Examples
a(2)=7: 1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 2000000.
Crossrefs
Programs
-
Mathematica
Rest@ CoefficientList[Series[(x - x^10)/(1 - x) ((1 - x^10)/(1 - x))^#, {x, 0, 9 (# + 1)}], x] &@ 6 (* or *) Function[w, Count[w, #] & /@ Range[Max@ w]]@ Map[Total@ IntegerDigits@ # &, Range[10^#, 10^(# + 1) - 1]] &@ 6 (* Michael De Vlieger, Dec 07 2016 *)
-
PARI
b=vector(63, i, 0); for(n=1000000, 9999999, a=eval(Vec(Str(n))); b[sum(j=1, 7, a[j])]++); for(n=1, 63, print1(b[n], ", "))
-
PARI
Vec((1-x^9)*(1-x^10)^6/(1-x)^7) \\ shorter than (1-x^9)/(1-x)*((1-x^10)/(1-x))^6, but not better. - M. F. Hasler, Mar 05 2017
Formula
G.f.: (x - x^10)/(1 - x)*((1 - x^10)/(1 - x))^6. - Michael De Vlieger, Dec 07 2016
a(64-n) = a(n), 1 <= n <= 63. - M. F. Hasler, Mar 05 2017
Comments